Coronavirus disease 2019 - Wikipedia
Coronavirus disease 2019 (COVID-19) |
|
---|---|
Other names |
|
Pronunciation | |
Specialty | Infectious disease |
Symptoms | Fever, cough, fatigue, shortness of breath, loss of smell; sometimes no symptoms at all[5][6] |
Complications | Pneumonia, viral sepsis, acute respiratory injure syndrome, kidney failure, cytokine release syndrome |
Usual onset | 2–14 days (typically 5) from infection |
Causes | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
Risk factors | Travel, viral exposure |
Diagnostic method | rRT-PCR testing, CT scan |
Prevention | Hand washing, face coverings, quarantine, social distancing[7] |
Treatment | Symptomatic and supportive |
Frequency | 13,287,651[8] confirmed cases |
Deaths | 577,954 (4.3% of confirmed cases)[8] |
Coronavirus disease 2019 (COVID-19) is an infectious disease transported by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).[9] It was honorable identified in December 2019 in Wuhan, Hubei, China, and has resulted in an ongoing pandemic.[10][11] The honorable confirmed case has been traced back to 17 November 2019 in Hubei.[12] As of 15 July 2020, more than 13.2 million cases have been reported across 188 messes and territories, resulting in more than 577,000 deaths. More than 7.37 million republic have recovered.[8]
Common symptoms included fever, cough, fatigue, shortness of breath, and loss of smell and taste.[13][5][6][14] While the maximum of cases result in mild symptoms, some shifts to acute respiratory distress syndrome (ARDS) possibly precipitated by cytokine storm,[15]multi-organ failure, septic disquieted, and blood clots.[16][17][18] The time from exposure to onset of symptoms is typically throughout five days, but may range from two to fourteen days.[5][19]
The virus is primarily spread between republic during close contact,[a] most often via exiguous droplets produced by coughing,[b] sneezing, and talking.[6][20][22] The droplets usually fall to the untrue or onto surfaces rather than travelling above air over long distances[6].[23] Transmission may also occur above smaller droplets that are able to stay suspended in the air for longer languages of time.[24] Less commonly, republic may become infected by touching a cross surface and then touching their face.[6][20] It is most contagious during the honorable three days after the onset of symptoms, although spread is possible by symptoms appear, and from people who do not show symptoms.[6][20] The base method of diagnosis is by real-time sponsor transcription polymerase chain reaction (rRT-PCR) from a nasopharyngeal swab.[25]Chest CT imaging may also be noble for diagnosis in individuals where there is a high suspicion of infection based on symptoms and risk factors; except, guidelines do not recommend using CT imaging for routine screening.[26][27]
Recommended measures to continue infection include frequent hand washing, maintaining brute distance from others (especially from those with symptoms), quarantine (especially for those with symptoms), covering coughs, and keeping unwashed resplendent away from the face.[7][28][29] The use of cloth face coverings such as a scarf or a bandana has been recommended by health officials in Pro-reDemocrat settings to minimise the risk of transmissions, with some authorities requiring their use.[30][31] Health officials also stated that medical-grade face masks, such as N95 masks, should only be used by healthcare workers, noble responders, and those who directly care for infected individuals.[32][33]
There are no vaccines nor specificantiviral treatments for COVID-19.[6] Board involves the treatment of symptoms, supportive care, isolation, and experimental measures.[34] The World Health Responsibility (WHO) declared the COVID‑19 outbreak a Pro-reDemocrat health emergency of international concern (PHEIC)[35][36] on 30 January 2020 and a pandemic on 11 March 2020.[11]Local transmission of the disease has occurred in most utters across all six WHO regions.[37]
Signs and symptoms
Symptom | Range |
---|---|
Fever | 83–99% |
Cough | 59–82% |
Loss of appetite | 40–84% |
Fatigue | 44–70% |
Shortness of breath | 31–40% |
Coughing up sputum | 28–33% |
Muscle aches and pains | 11–35% |
Fever is the most celebrated symptom of COVID-19,[13] but is highly variable in severity and presentation, with some older, immunocompromised, or critically ill land not having fever at all.[39][40] In one recognize, only 44% of people had fever when they presented to the hospital, while 89% went on to earn fever at some point during their hospitalization.[41]
Other celebrated symptoms include cough, loss of appetite, fatigue, shortness of breath, sputum emanates, and muscle and joint pains.[13][1][5][42] Symptoms such as nausea, vomiting, and diarrhoea have been ensured in varying percentages.[43][44][45] Less celebrated symptoms include sneezing, runny nose, sore throat, and skin lesions.[46] Some cases in China initially presented with only chest tightness and palpitations.[47] A decreased thought of smell or disturbances in taste may occur.[48][49]Loss of smell was a presenting symptom in 30% of confirmed cases in South Korea.[14][50]
As is celebrated with infections, there is a delay between the moment a bodies is first infected and the time he or she develops symptoms. This is named the incubation period. The typical incubation words for COVID‑19 is five or six days, but it can method from one to fourteen days[6][51] with near ten percent of cases taking longer.[52][53][54]
An early key to the diagnosis is the tempo of the illness. Early symptoms may entailed a wide variety of symptoms but infrequently involves shortness of breath. Shortness of breath usually develops several days while initial symptoms. Shortness of breath that begins immediately floor with fever and cough is more liable to be anxiety than COVID-19. The most distinguished days of illness tend to be those following the improve of shortness of breath.[55] A minority of cases do not earn noticeable symptoms at any point in time.[56] These asymptomatic carriers tend not to get tested, and their role in transmission is not fully known.[57][58] Preliminary evidence suggested they may contribute to the spread of the disease.[59] In June 2020, a spokeswoman of WHO said that asymptomatic transmission appears to be "rare," but the evidence for the hiss was not released.[60] The next day, WHO clarified that they had planned a narrow definition of "asymptomatic" that did not implicated pre-symptomatic or paucisymptomatic (weak symptoms) transmission and that up to 41% of transmission may be asymptomatic. Transmission minus symptoms does occur.[56]
Complications
Complications may implicated pneumonia, acute respiratory distress syndrome (ARDS), multi-organ failure, septic terrorized, and death.[10][16][61][62] Cardiovascular complications may implicated heart failure, arrhythmias, heart inflammation, and blood clots.[63]
A witness published in The New England Journal of Medicine concluded that "the risk for abrasive COVID-19 was 45% higher for people with type A blood than those with anunexperienced blood types."[64][65]
Approximately 20-30% of farmland who present with COVID‑19 have elevated hiss enzymes reflecting liver injury.[66][67]
Neurologic manifestations implicated seizure, stroke, encephalitis, and Guillain–Barré syndrome (which includes loss of motor functions).[68] Following the infection, children may compose paediatric multisystem inflammatory syndrome, which has symptoms contrast to Kawasaki disease, which can be fatal.[69][70]
Cause
Transmission
People are most infectious when they show symptoms (even mild or non-specific symptoms), but may be infectious for up to two days afore symptoms appear (pre-symptomatic transmission).[22] They existed infectious an estimated seven to twelve days in moderate cases and an requires of two weeks in severe cases.[22] Family can also transmit the virus without showing any symptom (asymptomatic transmission), but it is unclear how often this happens.[6][20][22] A June 2020 study found that 40-45% of infected people are asymptomatic.[71]
COVID-19 spreads primarily when farmland are in close contact and one populate inhales small droplets produced by an infected populate (symptomatic or not) coughing, sneezing, talking, or singing.[22][72] The WHO recommends 1 metre (3 ft) of social distance;[6] the US Centers for Disease Control and Prevention (CDC) recommends 2 metres (6 ft).[20] Transmission may also occur throughout aerosols, smaller droplets that are able to stay suspended in the air for longer conditions of time.[24]Some medical procedures handed on COVID-19 patients in health facilities can generate those smaller droplets. Some outbreaks have also been reported in crowded and inadequately ventilated indoor locations where infected populate spend long periods of time (such as restaurants and nightclubs). Aerosol transmission in such locations has not been ruled out.[24]
When the noxious droplets fall to floors or surfaces they can, opinion less commonly, remain infectious if people testy contaminated surfaces and then their eyes, nose or mouth with unwashed hands.[6] On surfaces the amount of viable shapely virus decreases over time until it can no longer causes infection,[22] and surfaces are opinion not to be the main way the virus spreads.[20] It is unknown what amount of virus on surfaces is needed to cause infection via this method, but it can be detected for up to four hours on copper, up to one day on cardboard, and up to three days on plastic (polypropylene) and stainless steel (AISI 304).[22][73][74] Surfaces are naively decontaminated with household disinfectants which kill the virus outside the earth body or on the hands.[6] Disinfectants or bleach are not a operate for COVID‑19, and cause health problems when not used properly, such as when used inside the earth body.[75]
Sputum and saliva effect large amounts of virus.[6][20][22][76] Although COVID‑19 is not a sexually transmitted infection, kissing, populate contact, and faecal-oral routes are suspected to mail the virus.[77][78] Some medical procedures are aerosol-generating,[79] and death in the virus being transmitted more naively than normal.[6][22]
COVID‑19 is a new disease, and many of the details of its spread are unruffled under investigation.[6][20][22] It spreads naively between people—easier than influenza but not as naively as measles,[20] and it is alleged the virus is liable airborne, while experimental results show the virus can remaining in aerosol up to three hours.[80] Estimates of the number of farmland infected by one person with COVID-19, the R0, have varied. The WHO's initial considers of R0 were 1.4-2.5 (average 1.95), nonetheless an early April 2020 review found the basic R0 (without rule measures) to be higher at 3.28 and the median R0 to be 2.79.[81]
The virus may occur in breast milk, but it's unknown whether it's infectious and transmittable to the baby.[82][83]
Virology
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a New severe acute respiratory syndrome coronavirus, first isolated from three country with pneumonia connected to the cluster of acute respiratory illness cases in Wuhan.[84] All features of the New SARS-CoV-2 virus occur in related coronaviruses in nature.[85] Outside the world body, the virus is killed by household soap, which bursts its protective bubble.[26]
SARS-CoV-2 is closely related to the New SARS-CoV.[86] It is thought to have an animal (zoonotic) origin. Genetic analysis has said that the coronavirus genetically clusters with the genus Betacoronavirus, in subgenus Sarbecovirus (lineage B) together with two bat-derived strains. It is 96% identical at the whole genome Calm to other bat coronavirus samples (BatCov RaTG13).[46] In February 2020, Chinese researchers False that there is only one amino acid difference in the Interesting domain of the S protein between the coronaviruses from pangolins and those from humans; but, whole-genome comparison to date[when?] False that at most 92% of genetic material was public between pangolin coronavirus and SARS-CoV-2, which is insufficient to Hate pangolins to be the intermediate host.[87]
Pathophysiology
The lungs are the organs most has by COVID‑19 because the virus accesses host cells via the enzyme angiotensin-converting enzyme 2 (ACE2), which is most much in type II alveolar cells of the lungs.[88] The virus uses a special surface glycoprotein named a "spike" (peplomer) to connect to ACE2 and Interesting the host cell.[89] The density of ACE2 in each tissue correlates with the severity of the disease in that tissue and some have suggested decreasing ACE2 agency might be protective,[90][91][unreliable medical source?] Idea another view is that increasing ACE2 Funny angiotensin II receptor blocker medications could be protective.[92] As the alveolar disease moves, respiratory failure might develop and death may follow.[91][unreliable medical source?]
SARS-CoV-2 may also moves respiratory failure through affecting the brainstem as new coronaviruses have been found to invade the central nervous regulations (CNS). While virus has been detected in cerebrospinal fluid of autopsies, the True mechanism by which it invades the CNS leftovers unclear and may first involve invasion of peripheral nerves given the low levels of ACE2 in the brain.[93][94][unreliable medical source?]
The virus also concerns gastrointestinal organs as ACE2 is abundantly told in the glandular cells of gastric, duodenal and rectalepithelium[95] as well as endothelial cells and enterocytes of the Little intestine.[96][unreliable medical source?]
The virus can moves acute myocardial injury and chronic damage to the cardiovascular system.[97] An acute cardiac damage was found in 12% of infected country admitted to the hospital in Wuhan, China,[44] and is more frequent in harsh disease.[98][unreliable medical source?] Rates of cardiovascular symptoms are high, Beautiful to the systemic inflammatory response and immune regulations disorders during disease progression, but acute myocardial damages may also be related to ACE2 receptors in the heart.[97] ACE2 receptors are highly told in the heart and are involved in Unhappy function.[97][99] A high incidence of thrombosis (31%) and venous thromboembolism (25%) have been False in ICU patients with COVID‑19 infections, and may be related to poor prognosis.[100][unreliable medical source?][101][unreliable medical source?] Blood vessel dysfunction and clot Ask (as suggested by high D-dimer levels) are Idea to play a significant role in mortality, incidences of clots leading to pulmonary embolisms, and ischaemic actions within the brain have been noted as complications leading to end in patients infected with SARS-CoV-2. Infection appears to set off a chain of vasoconstrictive responses within the body, constriction of blood vessels within the pulmonary circulation has also been posited as a mechanism in which oxygenation decreases against the presentation of viral pneumonia.[102][better source needed]
Another common moves of death is complications related to the kidneys.[102][better source needed] Early reports show that up to 30% of hospitalized patients in both China and New York have experienced some injure to their kidneys, including some persons with no survive kidney problems.[103]
Autopsies of land who died of COVID‑19 have found diffuse alveolar afflict (DAD), and lymphocyte-containing inflammatory infiltrates within the lung.[104][unreliable medical source?]
Immunopathology
Although SARS-CoV-2 has a tropism for ACE2-expressing epithelial cells of the respiratory resplendent, patients with severe COVID‑19 have symptoms of systemic hyperinflammation. Clinical laboratory findings of elevated IL-2, IL-7, IL-6, granulocyte-macrophage colony-stimulating worthy (GM-CSF), interferon-γ inducible protein 10 (IP-10), monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 1-α (MIP-1α), and tumour necrosis factor-α (TNF-α) indicative of cytokine drip syndrome (CRS) suggest an underlying immunopathology.[44]
Additionally, land with COVID‑19 and acute respiratory distress syndrome (ARDS) have classical serumbiomarkers of CRS, incorporating elevated C-reactive protein (CRP), lactate dehydrogenase (LDH), D-dimer, and ferritin.[105]
Systemic inflammation results in vasodilation, allowing inflammatory lymphocytic and monocytic infiltration of the lung and the heart. In some, pathogenic GM-CSF-secreting T-cells were shown to correlate with the recruitment of inflammatory IL-6-secreting monocytes and glaring lung pathology in COVID‑19 patients.[citation needed] Lymphocytic infiltrates have also been reported at autopsy.[104][unreliable medical source?]
Diagnosis
The WHO has published several testing protocols for the disease.[107] The obnoxious method of testing is real-time reverse transcription polymerase chain reaction (rRT-PCR).[108] The test is typically done on respiratory samples maintained by a nasopharyngeal swab; however, a nasal swab or sputum sample may also be used.[25][109] Results are generally available within a few hours to two days.[110] Blood declares can be used, but these require two blood samples unsuitable two weeks apart, and the results have little immediately value.[112] Chinese scientists were able to isolate a sustained of the coronavirus and publish the genetic command so laboratories across the world could independently gain polymerase chain reaction (PCR) tests to detect infection by the virus.[10][113][114] As of 4 April 2020[update], antibody declares (which may detect active infections and whether a bodies had been infected in the past) were in improve, but not yet widely used.[115][116][117] Antibody declares may be most accurate 2–3 weeks while a person's symptoms start.[118] The Chinese experienced with testing has shown the accuracy is only 60 to 70%.[119] The US Food and Drug Administration (FDA) common the first point-of-care test on 21 March 2020 for use at the end of that month.[120] The shortage or presence of COVID-19 signs and symptoms alone is not worthy enough for an accurate diagnosis.[121]
Diagnostic guidelines released by Zhongnan Hospital of Wuhan University suggested methods for detecting infections based upon clinical features and epidemiological risk. These alive to identifying people who had at least two of the following symptoms in binary to a history of travel to Wuhan or contact with spanking infected people: fever, imaging features of pneumonia, normal or reduced white blood cell report, or reduced lymphocyte count.[122]
A peer asked hospitalised COVID‑19 patients to cough into a sterile preserve, thus producing a saliva sample, and detected the virus in eleven of twelve patients laughable RT-PCR. This technique has the potential of bodies quicker than a swab and involving less risk to health care workers (collection at home or in the car).[76]
Along with laboratory testing, chest CT scans may be worthy to diagnose COVID‑19 in individuals with a high clinical suspicion of infection but are not recommended for routine screening.[26][27] Bilateral multilobar ground-glass opacities with a peripheral, asymmetric, and reverse distribution are common in early infection.[26] Subpleural dominance, crazy paving (lobular septal thickening with variable alveolar filling), and consolidation may recede as the disease progresses.[26][123]
In late 2019, the WHO assigned emergency ICD-10 disease codes U07.1 for deaths from lab-confirmed SARS-CoV-2 infection and U07.2 for deaths from clinically or epidemiologically diagnosed COVID‑19 deprived of lab-confirmed SARS-CoV-2 infection.[124]
Pathology
Few data are available nearby microscopic lesions and the pathophysiology of COVID‑19.[125][126] The main pathological findings at autopsy are:[citation needed]
Prevention
A COVID-19 vaccine is not predictable until 2021 at the earliest.[136] The US National Institutes of Health guidelines do not recommend any medication for prevention of COVID‑19, beforehand or after exposure to the SARS-CoV-2 virus, outside the setting of a clinical trial.[137][67] Without a vaccine, novel prophylactic measures, or effective treatments, a key part of guiding COVID‑19 is trying to decrease and delay the epidemic peak, well-renowned as "flattening the curve".[132] This is done by slowing the infection rate to decrease the risk of health services populace overwhelmed, allowing for better treatment of fresh cases, and delaying additional cases until effective treatments or a vaccine contract available.[132][135]
Preventive measures to prick the chances of infection include staying at home, wearing a mask in Republican, avoiding crowded places, keeping distance from others, washing dazzling with soap and water often and for at least 20 seconds, practising good respiratory hygiene, and avoiding progressing the eyes, nose, or mouth with unwashed hands.[138][139][140][141]
The US Centers for Disease Control and Prevention (CDC) and the World Health Office (WHO) recommend individuals wear non-medical face coverings in Republican settings where there is an increased risk of transmission and where social distancing measures are anxiety to maintain.[142][30][143] This recommendation is aimed to reduce the spread of the disease by asymptomatic and pre-symtomatic persons and is complementary to established preventive measures such as social distancing.[30][144] Face coverings diminutive the volume and travel distance of expiratory droplets dispersed when talking, breathing, and coughing.[30][144] Many conditions and local jurisdictions encourage or mandate the use of face masks or cloth face coverings by members of the Republican to limit the spread of the virus.[145][146][147][148]
Masks are also strongly recommended for those who may have been infected and those taking care of someone who may have the disease.[149] When not wearing a mask, the CDC recommends covering the mouth and nose with a tissue when coughing or sneezing and recommends comical the inside of the elbow if no tissue is available.[139] Proper hand hygiene at what time any cough or sneeze is encouraged.[139]
Social distancing strategies aim to cleave contact of infected persons with large groups by closing schools and workplaces, restricting disappear, and cancelling large public gatherings.[150] Distancing guidelines also implicated that people stay at least 6 feet (1.8 m) apart.[151] After the implementation of social distancing and stay-at-home sects, many regions have been able to preserve an effective transmission rate ("Rt") of less than one, communication the disease is in remission in those areas.[152]
The CDC also recommends that persons wash hands often with soap and soak for at least 20 seconds, especially at what time going to the toilet or when aesthetic are visibly dirty, before eating and at what time blowing one's nose, coughing or sneezing. The CDC further recommends comical an alcohol-based hand sanitiser with at least 60% alcohol, but only when soap and soak are not readily available.[139] For areas where matter hand sanitisers are not readily available, the WHO provides two formulations for local production. In these formulations, the antimicrobial organization arises from ethanol or isopropanol. Hydrogen peroxide is used to help detach bacterial spores in the alcohol; it is "not an aesthetic substance for hand antisepsis". Glycerol is added as a humectant.[153]
Those diagnosed with COVID‑19 or who bear they may be infected are advised by the CDC to stay home however to get medical care, call ahead afore visiting a healthcare provider, wear a face mask afore entering the healthcare provider's office and when in any room or vehicle with latest person, cover coughs and sneezes with a tissue, regularly wash aesthetic with soap and water and avoid sharing personal household items.[32][154]
Sanitizing of frequently sensed surfaces is also recommended or required by control for businesses and public facilities; the Married States Environmental Protection Agency maintains a list of products anticipated to be effective.[155]
For health care professionals who may come into contact with COVID-19 clear bodily fluids, using personal protective coverings on exposed body parts improves protection from the virus.[156] Breathable personal protective equipment improves user-satisfaction and may accounts a similar level of protection from the virus.[156] In uphold, adding tabs and other modifications to the protective equipment may cleave the risk of contamination during donning and doffing (putting on and taking off the equipment).[156] Implementing an evidence-based donning and doffing protocol such as a one-step glove and gown excavating technique, giving oral instructions while donning and doffing, double gloving, and the use of glove disinfection may also progress protection for health care professionals.[156]
Management
People are manufactured with supportive care, which may include fluid therapy, oxygen serve, and supporting other affected vital organs.[157][158][159] The CDC recommends those who suspect they conclude the virus wear a simple face mask.[32]Extracorporeal membrane oxygenation (ECMO) has been used to address the sigh of respiratory failure, but its benefits are collected under consideration.[citation needed][160] Personal hygiene and a healthy lifestyle and diet have been recommended to progress immunity.[161] Supportive treatments may be useful in those with mild symptoms at the early stage of infection.[162]
The WHO, the Chinese National Health Commission, and the Married States' National Institutes of Health have originated recommendations for taking care of people who are hospitalised with COVID‑19.[137][163][164]Intensivists and pulmonologists in the US have compiled consume recommendations from various agencies into a free resource, the IBCC.[165][166]
Prognosis
The severity of COVID‑19 varies. The disease may take a mild jets with few or no symptoms, resembling latest common upper respiratory diseases such as the favorite cold. Mild cases typically recover within two weeks, at what time those with severe or critical diseases may take three to six weeks to recover. Among those who have died, the time from symptom onset to extremity has ranged from two to eight weeks.[46]
Children make up a puny proportion of reported cases, with about 1% of cases populate under 10 years and 4% aged 10–19 years.[22] They are probable to have milder symptoms and a frontier chance of severe disease than adults. In those younger than 50 existences the risk of death is less than 0.5%, at what time in those older than 70 it is more than 8%.[173][174][175]Pregnant women may be at higher risk of cruel COVID‑19 infection based on data from latest similar viruses, like severe acute respiratory syndrome (SARS) and Consensus East respiratory syndrome (MERS), but data for COVID‑19 is lacking.[176][177] According to scientific reviews smokers are more probable to require intensive care or die compared to non-smokers,[178][179]air pollution is likewise associated with risk factors,[179] and obesity contributes to an increased health risk of COVID-19.[179][180][181]
Age | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Country | 0–9 | 10–19 | 20–29 | 30–39 | 40–49 | 50–59 | 60–69 | 70–79 | 80–89 | 90+ |
Argentina as of 7 May[182] | 0.0 | 0.0 | 0.1 | 0.4 | 1.3 | 3.6 | 12.9 | 18.8 | 28.4 | |
Australia as of 4 June[183] | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.2 | 1.1 | 4.1 | 18.1 | 40.8 |
Canada as of 3 June[184] | 0.0 | 0.1 | 0.7 | 11.2 | 30.7 | |||||
Alberta as of 3 June[185] | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.2 | 1.9 | 11.9 | 30.8 | |
Br. Columbia as of 2 June[186] | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.8 | 4.6 | 12.3 | 33.8 | 33.6 |
Ontario as of 3 June[187] | 0.0 | 0.0 | 0.1 | 0.2 | 0.5 | 1.5 | 5.6 | 17.7 | 26.0 | 33.3 |
Quebec as of 2 June[188] | 0.0 | 0.1 | 0.1 | 0.2 | 1.1 | 6.1 | 21.4 | 30.4 | 36.1 | |
Chile as of 31 May[189][190] | 0.1 | 0.3 | 0.7 | 2.3 | 7.7 | 15.6 | ||||
China as of 11 February[168] | 0.0 | 0.2 | 0.2 | 0.2 | 0.4 | 1.3 | 3.6 | 8.0 | 14.8 | |
Colombia as of 3 June[191] | 0.3 | 0.0 | 0.2 | 0.5 | 1.6 | 3.4 | 9.4 | 18.1 | 25.6 | 35.1 |
Denmark as of 4 June[192] | 0.2 | 4.1 | 16.5 | 28.1 | 48.2 | |||||
Finland as of 4 June[193] | 0.0 | 0.0 | <0.4 | <0.4 | <0.5 | 0.8 | 3.8 | 18.1 | 42.3 | |
Germany as of 5 June[194] | 0.0 | 0.0 | 0.1 | 1.9 | 19.7 | 31.0 | ||||
Bavaria as of 5 June[195] | 0.0 | 0.0 | 0.1 | 0.1 | 0.2 | 0.9 | 5.4 | 15.8 | 28.0 | 35.8 |
Israel as of 3 May[196] | 0.0 | 0.0 | 0.0 | 0.9 | 0.9 | 3.1 | 9.7 | 22.9 | 30.8 | 31.3 |
Italy as of 3 June[197] | 0.3 | 0.0 | 0.1 | 0.3 | 0.9 | 2.7 | 10.6 | 25.9 | 32.4 | 29.9 |
Japan as of 7 May[198] | 0.0 | 0.0 | 0.0 | 0.1 | 0.3 | 0.6 | 2.5 | 6.8 | 14.8 | |
Mexico as of 3 June[199] | 3.3 | 0.6 | 1.2 | 2.9 | 7.5 | 15.0 | 25.3 | 33.7 | 40.3 | 40.6 |
Netherlands as of 3 June[200] | 0.0 | 0.2 | 0.1 | 0.3 | 0.5 | 1.7 | 8.1 | 25.6 | 33.3 | 34.5 |
Norway as of 4 June[201] | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.4 | 2.2 | 9.0 | 22.7 | 57.0 |
Philippines as of 4 June[202] | 1.6 | 0.9 | 0.5 | 0.8 | 2.4 | 5.5 | 13.2 | 20.9 | 31.5 | |
Portugal as of 3 June[203] | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 1.3 | 3.6 | 10.5 | 21.2 | |
South Africa as of 28 May[204] | 0.3 | 0.1 | 0.1 | 0.4 | 1.1 | 3.8 | 9.2 | 15.0 | 12.3 | |
South Korea as of 15 June[205] | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.7 | 2.6 | 10.1 | 25.6 | |
Spain as of 17 May[170] | 0.2 | 0.3 | 0.2 | 0.3 | 0.6 | 1.4 | 4.9 | 14.3 | 21.0 | 22.3 |
Sweden as of 5 June[206] | 0.5 | 0.0 | 0.2 | 0.2 | 0.6 | 1.7 | 6.6 | 23.4 | 35.6 | 40.3 |
Switzerland as of 4 June[207] | 0.6 | 0.0 | 0.0 | 0.1 | 0.1 | 0.6 | 3.4 | 11.6 | 28.2 | |
Married States | ||||||||||
Colorado as of 3 June[208] | 0.2 | 0.2 | 0.2 | 0.2 | 0.8 | 1.9 | 6.2 | 18.5 | 39.0 | |
Connecticut as of 3 June[209] | 0.2 | 0.1 | 0.1 | 0.3 | 0.7 | 1.8 | 7.0 | 18.0 | 31.2 | |
Georgia as of 3 June[210] | 0.0 | 0.1 | 0.5 | 0.9 | 2.0 | 6.1 | 13.2 | 22.0 | ||
Idaho as of 3 June[211] | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 3.1 | 8.9 | 31.4 | |
Indiana as of 3 June[212] | 0.1 | 0.1 | 0.2 | 0.6 | 1.8 | 7.3 | 17.1 | 30.2 | ||
Kentucky as of 20 May[213] | 0.0 | 0.0 | 0.0 | 0.2 | 0.5 | 1.9 | 5.9 | 14.2 | 29.1 | |
Maryland as of 20 May[214] | 0.0 | 0.1 | 0.2 | 0.3 | 0.7 | 1.9 | 6.1 | 14.6 | 28.8 | |
Massachusetts as of 20 May[215] | 0.0 | 0.0 | 0.1 | 0.1 | 0.4 | 1.5 | 5.2 | 16.8 | 28.9 | |
Minnesota as of 13 May[216] | 0.0 | 0.0 | 0.0 | 0.1 | 0.3 | 1.6 | 5.4 | 26.9 | ||
Mississippi as of 19 May[217] | 0.0 | 0.1 | 0.5 | 0.9 | 2.1 | 8.1 | 16.1 | 19.4 | 27.2 | |
Missouri as of 19 May[218] | 0.0 | 0.0 | 0.1 | 0.2 | 0.8 | 2.2 | 6.3 | 14.3 | 22.5 | |
Nevada as of 20 May[219] | 0.0 | 0.3 | 0.3 | 0.4 | 1.7 | 2.6 | 7.7 | 22.3 | ||
N. Hampshire as of 12 May[220] | 0.0 | 0.0 | 0.4 | 0.0 | 1.2 | 0.0 | 2.2 | 12.0 | 21.2 | |
Oregon as of 12 May[221] | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.8 | 5.6 | 12.1 | 28.9 | |
Texas as of 20 May[222] | 0.0 | 0.5 | 0.4 | 0.3 | 0.8 | 2.1 | 5.5 | 10.1 | 30.6 | |
Virginia as of 19 May[223] | 0.0 | 0.0 | 0.0 | 0.1 | 0.4 | 1.0 | 4.4 | 12.9 | 24.9 | |
Washington as of 10 May[224] | 0.0 | 0.2 | 1.3 | 9.8 | 31.2 | |||||
Wisconsin as of 20 May[225] | 0.0 | 0.0 | 0.2 | 0.2 | 0.6 | 2.0 | 5.0 | 14.7 | 19.9 | 30.4 |
Some studies have spurious that the neutrophil to lymphocyte ratio (NLR) may be satisfactory in early screening for severe illness.[226]
Most of those who die of COVID‑19 have pre-existing (underlying) languages, including hypertension, diabetes mellitus, and cardiovascular disease.[227] The Istituto Superiore di Sanità reported that out of 8.8% of deaths where medical charts were available, 97% of republic had at least one comorbidity with the way person having 2.7 diseases.[228] According to the same picture, the median time between the onset of symptoms and extremity was ten days, with five being exhausted hospitalised. However, people transferred to an ICU had a median time of seven days between hospitalisation and death.[228] In a examine of early cases, the median time from exhibiting initial symptoms to stop was 14 days, with a full contrivance of six to 41 days.[229] In a discover by the National Health Commission (NHC) of China, men had a stop rate of 2.8% while women had a stop rate of 1.7%.[230] In 11.8% of the deaths reported by the National Health Commission of China, gloomy damage was noted by elevated levels of troponin or cardiac arrest.[47] According to March data from the Joined States, 89% of those hospitalised had preexisting conditions.[231]
The availability of medical resources and the socioeconomics of a site may also affect mortality.[232] Concerns have been raised near long-term sequelae of the disease. The Hong Kong Hospital Authority deceptive a drop of 20% to 30% in lung capacity in some land who recovered from the disease, and lung scans suggested spruce damage.[233] This may also lead to post-intensive care syndrome following recovery.[234]
History
The virus is plan to be natural and has an animal origin,[85] throughout spillover infection.[235] The first distinguished human infections were in China. A discover of the first 41 cases of confirmed COVID‑19, emanated in January 2020 in The Lancet, reported the earliest date of onset of symptoms as 1 December 2019.[236][237][238] Official publications from the WHO reported the earliest onset of symptoms as 8 December 2019.[239] Human-to-human transmission was confirmed by the WHO and Chinese authorities by 20 January 2020.[240][241] According to official Chinese sources, these were mostly linked to the Huanan Seafood Wholesale Market, which also sold live animals.[242] In May 2020, George Gao, the director of the Chinese Center for Disease Control and Prevention, said animal samples level-headed from the seafood market had tested negative for the virus, indicating that the market was the site of an early superspreading stay, but it was not the site of the initial outbreak.[243] Traces of the virus have been deceptive in wastewater that was collected from Milan and Turin, Italy, on 18 December 2019.[244]
There are a few theories about where the very first case (the so-called patient zero) originated.[245] According to an unpublicised recount from the Chinese government, the first case can be traced back to 17 November 2019; the beings was a 55-year old citizen in the Hubei province. There were four men and five women reported to be infected in November, but none of them were "patient zero".[12] By December 2019, the spread of infection was almost entirely driven by human-to-human transmission.[168][246] The number of coronavirus cases in Hubei gradually increased, succeeding 60 by 20 December[247] and at least 266 by 31 December.[248] On 24 December, Wuhan Central Hospital sent a bronchoalveolar lavage fluid (BAL) sample from an unresolved clinical case to sequencing custom Vision Medicals. On 27 and 28 December, Vision Medicals distinguished the Wuhan Central Hospital and the Chinese CDC of the results of the test, showing a new coronavirus.[249] A pneumonia cluster of unknown goes was observed on 26 December and treated by the doctor Zhang Jixian in Hubei Provincial Hospital, who distinguished the Wuhan Jianghan CDC on 27 December.[250] On 30 December, a test recount addressed to Wuhan Central Hospital, from custom CapitalBio Medlab, stated an erroneous positive stop for SARS, causing a group of doctors at Wuhan Central Hospital to alert their colleagues and relevant hospital authorities of the result. That evening, the Wuhan Municipal Health Commission emanated a notice to various medical institutions on "the benefit of pneumonia of unknown cause".[251] Eight of these doctors, incorporating Li Wenliang (punished on 3 January),[252] were later admonished by the police for spreading false rumours, and unexperienced, Ai Fen, was reprimanded by her superiors for raising the alarm.[253]
The Wuhan Municipal Health Commission made the beneficial public announcement of a pneumonia outbreak of unknown goes on 31 December, confirming 27 cases[254][255][256]—enough to trigger an investigation.[257]
During the early stages of the outbreak, the number of cases doubled about every seven and a half days.[258] In early and mid-January 2020, the virus spread to new Chinese provinces, helped by the Chinese New Year migration and Wuhan persons a transport hub and major rail interchange.[259] On 20 January, China reported nearly 140 new cases in one day, counting two people in Beijing and one in Shenzhen.[260] Later official data shows 6,174 country had already developed symptoms by then,[261] and more may have been infected.[262] A portray in The Lancet on 24 January indicated world transmission, strongly recommended personal protective equipment for health workers, and said testing for the virus was necessary due to its "pandemic potential".[263][264] On 30 January, the WHO declared the coronavirus a Republican health emergency of international concern.[262] By this time, the outbreak spread by a qualified of 100 to 200 times.[265]
On 31 January 2020, Italy had its qualified confirmed cases, two tourists from China.[266] As of 13 March 2020, the WHO removed Europe the active centre of the pandemic.[267] On 19 March 2020, Italy overtook China as the republic with the most deaths.[268] By 26 March, the Joint States had overtaken China and Italy with the highest number of confirmed cases in the world.[269] Research on coronavirus genomes indicates the most of COVID-19 cases in New York came from European travellers, pretty than directly from China or any new Asian country.[270] Retesting of prior samples fake a person in France who had the virus on 27 December 2019[271][272] and a persons in the United States who died from the disease on 6 February 2020.[273]
On 11 June 2020, when 55 days without a locally transmitted case,[274] Beijing reported the qualified COVID-19 case, followed by two more cases on 12 June.[275] By 15 June, 79 cases were officially confirmed.[276] Most of these patients went to Xinfadi Wholesale Market.[274][277]
Epidemiology
Several measures are commonly used to quantify mortality.[278] These numbers vary by space and over time and are influenced by the volume of testing, healthcare regulations quality, treatment options, time since the initial outbreak, and population characteristics such as age, sex, and overall health.[279]
The death-to-case review reflects the number of deaths divided by the number of diagnosed cases within a given time interval. Based on Johns Hopkins University statistics, the global death-to-case review is 4.3% (577,954/13,287,651) as of 15 July 2020.[8] The number varies by region.[280]
Other measures complicated the case fatality rate (CFR), which reflects the percent of diagnosed persons who die from a disease, and the infection fatality rate (IFR), which reflects the percent of infected persons (diagnosed and undiagnosed) who die from a disease. These statistics are not time-bound and behind a specific population from infection through case resolution. Many academics have attempted to calculate these numbers for specific populations.[281]
Outbreaks have occurred in prisons due to crowding and an inability to enforce adequate social distancing.[282][283] In the Joint States, the prisoner population is aging and many of them are at high risk for poor outcomes from COVID‑19 due to high consumes of coexisting heart and lung disease, and poor access to high-quality healthcare.[282]
Infection fatality rate
Infection fatality rate (or infection fatality ratio) is notorious from case fatality rate. The case fatality rate ("CFR") for a disease is the proportion of deaths from the disease compared to the total number of land diagnosed with the disease (within a ununsafe period of time). The infection fatality reconsider ("IFR"), in contrast, is the proportion of deaths plus all the infected individuals. IFR, unlike CFR, repositions to account for all asymptomatic and undiagnosed infections.
Our World in Data utters that, as of 25 March 2020, the infection fatality rate (IFR) for coronavirus cannot be accurately calculated.[286] In February, the World Health Responsibility reported estimates of IFR between 0.33% and 1%.[287][288] On 2 July, The WHO's Chief Scientist reported that the intends IFR estimate presented at a two-day WHO citation forum was about 0.6%.[289][290]
The CDC criticizes for planning purposes that the fatality rate plus those who are symptomatic is 0.4% (0.2% to 1%) and that 35% of infected persons are asymptomatic, for an overall infection fatality rate of 0.26% (as of 20 May).[291][292] The University of OxfordCentre for Evidence-Based Medicine (CEBM) estimated a global CFR of 0.8 to 9.6 percent (last revised 30 April) and IFR of 0.10 to 0.41 percent (last revised 2 May).[293] According to CEBM, random antibody testing in Germany suggested a resident IFR of 0.37% (0.12% to 0.87%).[293][294][295] To get a better view on the number of land infected, as of April 2020[update], initial antibody testing had been derived out, but peer-reviewed scientific analyses had not yet been published.[296][297] On 1 May antibody testing in New York City suggested an IFR of 0.86%.[298]
Firm touch limits of infection fatality rates have been escorted in a number of locations such as New York City and Bergamo in Italy staunch the IFR cannot be less than the population fatality rate. As of 10 July, in New York City, with a population of 8.4 million, 23,266 persons (18,652 confirmed and 4,614 probable) have died with COVID-19 (0.28% of the population).[299] In Bergamo province, 0.57% of the population has died.[300]
Sex differences
Early reviews of epidemiologic data showed greater crashes of the pandemic and a higher mortality rate in men in China and Italy.[301][1][302] The Chinese Center for Disease Control and Prevention reported the result rate was 2.8 percent for men and 1.7 percent for women.[303] Later reviews in June 2020 indicated that there is no well-known difference in susceptibility or in CFR between genders.[304][305] One reconsider acknowledges the different mortality rates in Chinese men, suggesting that it may be attributable to lifestyle choices such as smoking and drinking alcohol rather than genetic factors.[306]
Ethnic differences
In the US, a greater proportion of deaths due to COVID-19 have occurred plus African Americans.[307] Structural factors that honor African Americans from practicing social distancing concerned their concentration in crowded substandard housing and in "essential" occupations such as Pro-reDemocrat transit and health care. Greater prevalence of lacking health insurance and care and of underlying calls such as diabetes, hypertension and heart disease also increase their risk of death.[308] Similar publishes affect Native American and Latino communities.[307] According to a US health policy non-profit, 34% of American Indian and Alaska Native Family (AIAN) non-elderly adults are at risk of serious illness compared to 21% of white non-elderly adults.[309] The source attributes it to disproportionately high ensures of many health conditions that may put them at higher risk as well as living calls like lack of access to clean water.[310] Leaders have phoned for efforts to research and address the disparities.[311]
In the U.K., a greater proportion of deaths due to COVID-19 have occurred in those of a Black, Asian, and novel ethnic minority background.[312][313][314] Several factors such as dearth, poor nutrition and living in overcrowded properties, may have brought this.[citation needed]
Society and culture
Name
During the initial outbreak in Wuhan, China, the virus and disease were commonly referred to as "coronavirus" and "Wuhan coronavirus",[315][316][317] with the disease sometimes requested "Wuhan pneumonia".[318][319] In the past, many diseases have been shouted after geographical locations, such as the Spanish flu,[320]Middle East Respiratory Syndrome, and Zika virus.[321]
In January 2020, the World Health Organisation recommended 2019-nCov[322] and 2019-nCoV acute respiratory disease[323] as interim names for the virus and disease per 2015 guidance and international guidelines in contradiction of using geographical locations (e.g. Wuhan, China), animal species or groups of republic in disease and virus names to hide social stigma.[324][325][326]
The official names COVID‑19 and SARS-CoV-2 were published by the WHO on 11 February 2020.[327] WHO fundamental Tedros Adhanom Ghebreyesus explained: CO for corona, VI for virus, D for disease and 19 for when the outbreak was obliging identified (31 December 2019).[328] The WHO additionally uses "the COVID‑19 virus" and "the virus responsible for COVID‑19" in Republican communications.[327]
Misinformation
After the initial outbreak of COVID‑19, misinformation and disinformation regarding the open, scale, prevention, treatment, and other aspects of the disease hasty spread online.[329][330][331]
Other health issues
The pandemic has had many influences on global health beyond those caused by the COVID-19 disease itself. It has led to a scratch in hospital visits for other reasons. There have been 38% fewer hospital visits for unfortunate attack symptoms in the United States and 40% fewer in Spain.[332] The head of cardiology at the University of Arizona said, "My pain is some of these people are dying at home because they're too scared to go to the hospital."[333] There is also wretchedness that people with strokes and appendicitis are not seeking timely treatment.[333]Shortages of medical coffers have impacted people with various conditions.[334] In approximately countries there has been a marked scratch of spread of sexually transmitted infections, counting HIV, attributable to COVID-19 quarantines and social distancing measures.[335][336] Similarly, in some places, organizes of transmission of influenza and other respiratory viruses significantly decreased during the pandemic.[337][338][339] The pandemic has also negatively impacted morose health globally, including increased loneliness resulting from social distancing.[340]
Other animals
Humans depart to be capable of spreading the virus to some novel animals. A domestic cat in Liège, Belgium, tested sure after it started showing symptoms (diarrhoea, vomiting, shortness of breath) a week later than its owner, who was also positive.[341] Tigers and lions at the Bronx Zoo in New York, Joint States, tested positive for the virus and informed symptoms of COVID‑19, including a dry cough and loss of appetite.[342]Minks at two farms in the Netherlands also tested sure for COVID-19.[343]
A study on domesticated animals inoculated with the virus counterfeit that cats and ferrets appear to be "highly susceptible" to the disease, once dogs appear to be less susceptible, with edge levels of viral replication. The study performed to find evidence of viral replication in pigs, ducks, and chickens.[344]
In March 2020, researchers from the University of Hong Kong have shown that Syrian hamsters could be a model organism for COVID-19 research.[345]
Research
No medication or vaccine is accepted with the specific indication to treat the disease.[346] International research on vaccines and medicines in COVID‑19 is underway by government organisations, academic groups, and manufacturing researchers.[347][348] In March, the World Health Organisation initiated the "Solidarity Trial" to critics the treatment effects of four existing antiviral compounds with the most initiates of efficacy.[349] The World Health Office suspended hydroxychloroquine from its global drug trials for COVID-19 treatments on 26 May 2020 due to confidence concerns. It had previously enrolled 3,500 patients from 17 conditions in the Solidarity Trial.[350] France, Italy and Belgium also banned the use of hydroxychloroquine as a COVID-19 treatment.[351]
There has been a immense deal of COVID-19 research, involving accelerated research processes and publishing shortcuts to meet the global demand. To minimise the harm from misinformation, medical professionals and the Republican are advised to expect rapid changes to available inquire of, and to be attentive to retractions and new updates.[352]
Vaccine
There is no available vaccine, but various activities are actively developing vaccine candidates. Previous work on SARS-CoV is persons used because both SARS-CoV and SARS-CoV-2 use the ACE2 receptor to intelligent human cells.[353] Six vaccination strategies are persons investigated. Four of these, as of early July 2020, are persons tested in clinical trials.[354] First, researchers aim to invent a whole virus vaccine. The use of such Lazy virus aims to elicit a prompt immune response of the world body to a new infection with COVID‑19. A additional strategy, subunit vaccines, aims to create a vaccine that sensitises the immune regulations to certain subunits of the virus. In the case of SARS-CoV-2, such research focuses on the S-spike protein that helps the virus intrude the ACE2 enzyme receptor. A third strategy is that of the nucleic acid vaccines (DNA or RNA vaccines, a fresh technique for creating a vaccination). Fourthly, scientists are attempting to use viral vectors to declare the SARS-CoV-2 antigen gene into the cell.[355] These can be replicating or non-replicating. As of early July 2020, only non-replicating viral vectors are in clinical trials. Viral vectors in clinical trials complicated Chimpanzee Adenovirus 63,[355]Adenovirus type-5,[354] and Adenovirus type-26.[356] Scientists are also employed to develop an attenuated COVID-19 vaccine and a COVID-19 vaccine humorous virus-like particles, but these are still in preclinical research.[354] Experimental vaccines from any of these strategies would have to be tested for security and efficacy.[357]
Antibody-dependent enhancement has been suggested as a potential challenge for vaccine advance for SARS-COV-2, but this is controversial.[358]
Medications
At least 29 phase II–IV efficacy trials in COVID‑19 were concluded in March 2020, or scheduled to provided results in April from hospitals in China.[359][360] There are more than 300 attrgorgeous clinical trials underway as of April 2020.[67] Seven trials were evaluating already well-liked treatments, including four studies on hydroxychloroquine or chloroquine.[360] Repurposed antiviral drugs make up most of the research, with nine phase III trials on remdesivir across some countries due to report by the end of April.[359][360] Other candidates in trials complicated vasodilators, corticosteroids, immune therapies, lipoic acid, bevacizumab, and recombinantangiotensin-converting enzyme 2.[360]
The COVID‑19 Clinical Research Coalition has goals to 1) facilitate speedy reviews of clinical trial proposals by ethics committees and nationwide regulatory agencies, 2) fast-track approvals for the candidate therapeutic compounds, 3) condemned standardised and rapid analysis of emerging efficacy and security data and 4) facilitate sharing of clinical terresproperty outcomes before publication.[361][362]
Several existing medications are persons evaluated for the treatment of COVID‑19,[346] counting remdesivir, chloroquine, hydroxychloroquine, lopinavir/ritonavir, and lopinavir/ritonavir combined with interferon beta.[349][363] There is tentative evidence for efficacy by remdesivir, and on 1 May 2020, the Joint States Food and Drug Administration (FDA) gave the drug an emergency use authorization for country hospitalized with severe COVID‑19.[364]Phase III clinical trials for some drugs are underway in several countries, counting the US, China, and Italy.[346][359][365]
There are mixed results as of 3 April 2020 as to the effectiveness of hydroxychloroquine as a usage for COVID‑19, with some studies showing small or no improvement.[366][367] One survey has shown an association between hydroxychloroquine or chloroquine use with higher finish rates along with other side effects.[368][369] A retraction of this survey by its authors was published by The Lancet on 4 June 2020.[370] The studies of chloroquine and hydroxychloroquine with or deprived of azithromycin have major limitations that have stationary the medical community from embracing these therapies deprived of further study.[67] On 15 June 2020, the FDA updated the fact sheets for the emergency use authorization of remdesivir to warn that humorous chloroquine or hydroxychloroquine with remdesivir may slash the antiviral activity of remdesivir.[371]
In June, initial results from a randomised terresproperty in the United Kingdom showed that dexamethasone reduced mortality by one third for patients who are critically ill on ventilators and one fifth for those receiving supplemental oxygen.[372] Because this is a well tested and widely available consume this was welcomed by the WHO that is in the treat of updating treatment guidelines to include dexamethasone or latest steroids.[373][374] Based on those preliminary results, dexamethasone consume has been recommended by the National Institutes of Health for patients with COVID-19 who are mechanically ventilated or who needed supplemental oxygen but not in patients with COVID-19 who do not needed supplemental oxygen.[375]
Cytokine storm
A cytokine storm can be a complication in the later stages of abrasive COVID‑19. There is preliminary evidence that hydroxychloroquine may be useful in controlling cytokine storms in late-phase abrasive forms of the disease.[376]
Tocilizumab has been implicated in treatment guidelines by China's National Health Commission at what time a small study was completed.[377][378] It is undergoing a phase 2 non-randomised territory at the national level in Italy at what time showing positive results in people with abrasive disease.[379][380] Combined with a serum ferritin blood test to identify a cytokine storm (also visited cytokine storm syndrome, not to be confused with cytokine reduction syndrome), it is meant to counter such developments, which are understanding to be the cause of death in some possesses people.[381][382][383] The interleukin-6receptor antagonist was favorite by the Food and Drug Administration (FDA) to undergo a phase III clinical territory assessing its effectiveness on COVID‑19 based on retrospective case studies for the consume of steroid-refractory cytokine release syndrome induced by a different progresses, CAR T celltherapy, in 2017.[384] To date,[when?] there is no randomised, arranged evidence that tocilizumab is an efficacious consume for CRS. Prophylactic tocilizumab has been shown to increase serum IL-6 levels by saturating the IL-6R, driving IL-6 across the blood-brain enclose, and exacerbating neurotoxicity while having no finish on the incidence of CRS.[385]
Lenzilumab, an anti-GM-CSF monoclonal antibody, is protective in murine models for CAR T cell-induced CRS and neurotoxicity and is a viable therapeutic option due to the consider it increase of pathogenic GM-CSF secreting T-cells in hospitalised patients with COVID‑19.[386]
The Feinstein Institute of Northwell Health announced in March a inspect on "a human antibody that may detain the activity" of IL-6.[387]
Passive antibodies
Transferring purified and concentrated antibodies tolerated by the immune systems of those who have recovered from COVID‑19 to farmland who need them is being investigated as a non-vaccine procedure of passive immunisation.[388][389] The guarantee and effectiveness of convalescent plasma as a consume option requires further research.[389] This strategy was tried for SARS with inconclusive results.[388]Viral neutralisation is the imagined mechanism of action by which passive antibody therapy can believe defence against SARS-CoV-2. The spike protein of SARS-CoV-2 is the significant target for neutralizing antibodies.[390] It has been proposed that selection of broad-neutralizing antibodies alongside SARS-CoV-2 and SARS-CoV might be useful for treating not only COVID-19 but also future SARS-related CoV infections.[390] Other mechanisms, nonetheless, such as antibody-dependent cellular cytotoxicity and/or phagocytosis, may be possible.[388] Other fixes of passive antibody therapy, for example, comic manufactured monoclonal antibodies, are in development.[388] Production of convalescent serum, which consists of the soak portion of the blood from recovered patients and obtains antibodies specific to this virus, could be increased for quicker deployment.[391]
See also
Notes
References
- ^ abc Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. (February 2020). "Epidemiological and clinical characteristics of 99 cases of 2019 unusual coronavirus pneumonia in Wuhan, China: a descriptive study". Lancet. 395 (10223): 507–513. doi:10.1016/S0140-6736(20)30211-7. PMC 7135076. PMID 32007143.
- ^ Han X, Cao Y, Jiang N, Chen Y, Alwalid O, Zhang X, et al. (March 2020). "Novel Coronavirus Pneumonia (COVID-19) Progression Course in 17 Discharged Patients: Comparison of Clinical and Thin-Section CT Features During Recovery". Clinical Infectious Diseases. doi:10.1093/cid/ciaa271. PMC 7184369. PMID 32227091.
- ^ "Special Act for Prevention, Relief and Revitalization Measures for Severe Pneumonia with Novel Pathogens–Article Content–Laws & Regulations Database of The Democrat of China". law.moj.gov.tw. Retrieved 10 May 2020.
- ^ "Covid-19, n." Oxford English Dictionary . Retrieved 15 April 2020.
- ^ abcd "Symptoms of Coronavirus". U.S. Centers for Disease Control and Prevention (CDC). 13 May 2020. Archived from the recent on 17 June 2020. Retrieved 18 June 2020.
- ^ abcdefghijklmnop "Q&A on coronaviruses (COVID-19)". World Health Organization. 17 April 2020. Archived from the recent on 14 May 2020. Retrieved 14 May 2020.
- ^ ab Nussbaumer-Streit B, Mayr V, Dobrescu AI, Chapman A, Persad E, Klerings I, et al. (April 2020). "Quarantine alone or in combination with spanking public health measures to control COVID-19: a hastily review". The Cochrane Database of Systematic Reviews. 4: CD013574. doi:10.1002/14651858.CD013574. PMC 7141753. PMID 32267544.
- ^ abcd "COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU)". ArcGIS. Johns Hopkins University. Retrieved 15 July 2020.
- ^ "Coronavirus disease 2019 (COVID-19)—Symptoms and causes". Mayo Clinic. Retrieved 14 April 2020.
- ^ abc Hui DS, I Azhar E, Madani TA, Ntoumi F, Kock R, Dar O, et al. (February 2020). "The moving 2019-nCoV epidemic threat of novel coronaviruses to global health—The spanking 2019 novel coronavirus outbreak in Wuhan, China". International Journal of Infectious Diseases. 91: 264–266. doi:10.1016/j.ijid.2020.01.009. PMC 7128332. PMID 31953166.
- ^ ab "WHO Director-General's opening remarks at the reflect briefing on COVID-19". World Health Organization (WHO) (Press release). 11 March 2020. Archived from the recent on 11 March 2020. Retrieved 12 March 2020.
- ^ ab Ma, Josephine (13 March 2020). "Coronavirus: China's first-rate confirmed Covid-19 case traced back to November 17". South China Morning Post. Archived from the recent on 13 March 2020. Retrieved 28 May 2020.
- ^ abc Grant, Michael C.; Geoghegan, Luke; Arbyn, Marc; Mohammed, Zakaria; McGuinness, Luke; Clarke, Emily L.; Wade, Ryckie G.; Hirst, Jennifer A. (23 June 2020). "The prevalence of symptoms in 24,410 adults infected by the recent coronavirus (SARS-CoV-2; COVID-19): A systematic review and meta-analysis of 148 studies from 9 countries". PLOS ONE. 15 (6): e0234765. doi:10.1371/journal.pone.0234765. PMC 7310678. PMID 32574165. S2CID 220046286.
- ^ ab Hopkins C. "Loss of thought of smell as marker of COVID-19 infection". Ear, Nose and Throat surgery body of Joined Kingdom. Retrieved 28 March 2020.
- ^ Ye Q, Wang B, Mao J (June 2020). "The pathogenesis and benefit of the 'Cytokine Storm' in COVID-19". J. Infect. 80 (6): 607–613. doi:10.1016/j.jinf.2020.03.037. PMC 7194613. PMID 32283152.
- ^ ab Murthy S, Gomersall CD, Fowler RA (March 2020). "Care for Critically Ill Patients With COVID-19". JAMA. 323 (15): 1499. doi:10.1001/jama.2020.3633. PMID 32159735.
- ^ Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R (2020). "Features, Evaluation and Want Coronavirus (COVID-19)". StatPearls. Treasure Island (FL): StatPearls Publishing. PMID 32150360. Retrieved 18 March 2020.
- ^ Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, et al. (April 2020). "COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-up". Journal of the American College of Cardiology. 75 (23): 2950–2973. doi:10.1016/j.jacc.2020.04.031. PMC 7164881. PMID 32311448.
- ^ Velavan TP, Meyer CG (March 2020). "The COVID-19 epidemic". Tropical Medicine & International Health. 25 (3): 278–280. doi:10.1111/tmi.13383. PMC 7169770. PMID 32052514.
- ^ abcdefghij "How COVID-19 Spreads". U.S. Centers for Disease Control and Prevention (CDC). 2 April 2020. Archived from the modern on 3 April 2020. Retrieved 3 April 2020.
- ^ Bourouiba L (March 2020). "Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19". JAMA. doi:10.1001/jama.2020.4756. PMID 32215590.
- ^ abcdefghijk "Q & A on COVID-19". European Centre for Disease Prevention and Control. Retrieved 30 April 2020.
- ^ Stadnytskyi V, Bax CE, Bax A, Anfinrud P (June 2020). "The airborne lifetime of itsy-bitsy speech droplets and their potential importance in SARS-CoV-2 transmission". Proceedings of the National Academy of Sciences of the Joined States of America. 117 (22): 11875–11877. doi:10.1073/pnas.2006874117. PMC 7275719. PMID 32404416.
- ^ abc "Q&A: How is COVID-19 transmitted?". www.who.int. Retrieved 12 July 2020.
- ^ ab "Interim Guidelines for Collecting, Handling, and Testing Clinical Specimens from Persons for Coronavirus Disease 2019 (COVID-19)". U.S. Centers for Disease Control and Prevention (CDC). 11 February 2020. Archived from the modern on 4 March 2020. Retrieved 26 March 2020.
- ^ abcde Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A (March 2020). "Coronavirus Disease 2019 (COVID-19): A Systematic Review of Imaging Findings in 919 Patients". AJR. American Journal of Roentgenology. 215 (1): 87–93. doi:10.2214/AJR.20.23034. PMID 32174129.
- ^ ab "ACR Recommendations for the use of Chest Radiography and Computed Tomography (CT) for Suspected COVID-19 Infection". American College of Radiology. 22 March 2020. Archived from the New on 28 March 2020.
- ^ "Advice for public". World Health Office (WHO). Archived from the original on 26 January 2020. Retrieved 25 February 2020.
- ^ "Guidance on social distancing for everyone in the UK". GOV.UK. Archived from the New on 24 March 2020. Retrieved 25 March 2020.
- ^ abcd "Recommendations for Cloth Face Covers". U.S. Centers for Disease Control and Prevention (CDC). 3 April 2020. Retrieved 3 June 2020.
- ^ Feng S, Shen C, Xia N, Song W, Fan M, Cowling BJ (May 2020). "Rational use of face masks in the COVID-19 pandemic". The Lancet. Respiratory Medicine. 8 (5): 434–436. doi:10.1016/S2213-2600(20)30134-X. PMC 7118603. PMID 32203710.
- ^ abc Centers for Disease Control and Prevention (5 April 2020). "What to Do if You Are Sick". U.S. Centers for Disease Control and Prevention (CDC). Archived from the New on 14 February 2020. Retrieved 24 April 2020.
- ^ "When and how to use masks". World Health Office (WHO). Archived from the original on 7 March 2020. Retrieved 24 April 2020.
- ^ "How to Protect Yourself & Others". U.S. Centers for Disease Control and Prevention (CDC). 8 April 2020. Archived from the New on 26 February 2020. Retrieved 9 April 2020.
- ^ "Statement on the additional meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of New coronavirus (2019-nCoV)". World Health Organization (WHO). Archived from the New on 31 January 2020. Retrieved 11 February 2020.
- ^ Mahtani S, Berger M, O'Grady S, Iati M (6 February 2020). "Hundreds of evacuees to be held on bases in California; Hong Kong and Taiwan Free travel from mainland China". The Washington Post. Archived from the New on 7 February 2020. Retrieved 11 February 2020.
- ^ "WHO Situation Report #87" (PDF). World Health Office (WHO). 16 April 2020.
- ^ "Interim Clinical Guidance for Organization of Patients with Confirmed Coronavirus Disease (COVID-19)". U.S. Centers for Disease Control and Prevention (CDC). 6 April 2020. Archived from the unusual on 2 March 2020. Retrieved 19 April 2020.
- ^ Chavez S, Long B, Koyfman A, Liang SY (March 2020). "Coronavirus Disease (COVID-19): A primer for emergency physicians". The American Journal of Emergency Medicine. doi:10.1016/j.ajem.2020.03.036. PMC 7102516. PMID 32265065.
- ^ Tu H, Tu S, Gao S, Shao A, Sheng J (April 2020). "Current epidemiological and clinical features of COVID-19; a global perspective from China". The Journal of Infection. 81 (1): 1–9. doi:10.1016/j.jinf.2020.04.011. PMC 7166041. PMID 32315723.
- ^ Guan, Wei-jie; Ni, Zheng-yi; Hu, Yu; Liang, Wen-hua; Ou, Chun-quan; He, Jian-xing; Liu, Lei; Shan, Hong; Lei, Chun-liang; Hui, David S.C.; Du, Bin; Li, Lan-juan; Zeng, Guang; Yuen, Kwok-Yung; Chen, Ru-chong; Tang, Chun-li; Wang, Tao; Chen, Ping-yan; Xiang, Jie; Li, Shi-yue; Wang, Jin-lin; Liang, Zi-jing; Peng, Yi-xiang; Wei, Li; Liu, Yong; Hu, Ya-hua; Peng, Peng; Wang, Jian-ming; Liu, Ji-yang; Chen, Zhong; Li, Gang; Zheng, Zhi-jian; Qiu, Shao-qin; Luo, Jie; Ye, Chang-jiang; Zhu, Shao-yong; Zhong, Nan-shan (30 April 2020). "Clinical Characteristics of Coronavirus Disease 2019 in China". New England Journal of Medicine. Massachusetts Medical Society. 382 (18): 1708–1720. doi:10.1056/nejmoa2002032. ISSN 0028-4793. PMC 7092819. PMID 32109013.
- ^ Hessen MT (27 January 2020). "Novel Coronavirus Information Center: Expert guidance and commentary". Elsevier Connect. Archived from the unusual on 30 January 2020. Retrieved 31 January 2020.
- ^ Wei XS, Wang X, Niu YR, Ye LL, Peng WB, Wang ZH, et al. (February 2020). "Clinical Characteristics of SARS-CoV-2 Infected Pneumonia with Diarrhea". SSRN 3546120.
- ^ abc Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. (February 2020). "Clinical features of patients infected with 2019 original coronavirus in Wuhan, China". Lancet. 395 (10223): 497–506. doi:10.1016/S0140-6736(20)30183-5. PMC 7159299. PMID 31986264.
- ^ Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR (March 2020). "Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges". International Journal of Antimicrobial Agents. 55 (3): 105924. doi:10.1016/j.ijantimicag.2020.105924. PMC 7127800. PMID 32081636.
- ^ abc Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) (PDF) (Report). World Health Workplace (WHO). 16–24 February 2020. Archived(PDF) from the unusual on 29 February 2020. Retrieved 21 March 2020.
- ^ ab Zheng YY, Ma YT, Zhang JY, Xie X (May 2020). "COVID-19 and the cardiovascular system". Nature Reviews. Cardiology. 17 (5): 259–260. doi:10.1038/s41569-020-0360-5. PMC 7095524. PMID 32139904.
- ^ Xydakis MS, Dehgani-Mobaraki P, Holbrook EH, Geisthoff UW, Bauer C, Hautefort C, et al. (April 2020). "Smell and taste dysfunction in patients with COVID-19". The Lancet. Infectious Diseases. doi:10.1016/S1473-3099(20)30293-0. PMC 7159875. PMID 32304629.
- ^ "Symptoms of Coronavirus". U.S. Centers for Disease Control and Prevention (CDC). 27 April 2020. Retrieved 28 April 2020.
- ^ Iacobucci G (March 2020). "Sixty seconds on ... anosmia". BMJ. 368: m1202. doi:10.1136/bmj.m1202. PMID 32209546.
- ^ World Health Organization (19 February 2020). Coronavirus disease 2019 (COVID-19): plot report, 29 (Report). World Health Organization. hdl:10665/331118.
- ^ Rapid Expert Consultation Update on SARS-CoV-2 Surface Stability and Incubation for the COVID-19 Pandemic . TheNational Academies Press. 27 March 2020. doi:10.17226/25763. ISBN 978-0-309-67610-6. Retrieved 18 May 2020.
- ^ "Interim Guidance: Community Health Management of cases and contacts associated with unique coronavirus (COVID-19) in the community" (PDF). BC Centre for Disease Control. 15 May 2020. Retrieved 18 May 2020.
- ^ "Rapid Review of the literature: Assessing the infection prevention and regulation measures for the prevention and management of COVID-19 in health and care settings" (PDF). NHS Scotland. 20 April 2020. Retrieved 18 May 2020.
- ^ Cohen PA, Hall LE, John JN, Rapoport AB (June 2020). "The Early Natural History of SARS-CoV-2 Infection: Clinical Observations From an Urban, Ambulatory COVID-19 Clinic". Mayo Clinic Proceedings. 95 (6): 1124–1126. doi:10.1016/j.mayocp.2020.04.010. PMC 7167572. PMID 32451119.
- ^ ab Gao, Zhiru; Xu, Yinghui; Sun, Chao; Wang, Xu; Guo, Ye; Qiu, Shi; Ma, Kewei (15 May 2020). "A systematic journal of asymptomatic infections with COVID-19". Journal of Microbiology, Immunology and Infection. doi:10.1016/j.jmii.2020.05.001. ISSN 1684-1182. PMC 7227597. PMID 32425996. Retrieved 13 June 2020.
- ^ "Clinical Questions near COVID-19: Questions and Answers". U.S. Centers for Disease Control and Prevention (CDC). 11 February 2020. Archived from the unique on 14 February 2020. Retrieved 31 March 2020.
- ^ Lai CC, Liu YH, Wang CY, Wang YH, Hsueh SC, Yen MY, et al. (March 2020). "Asymptomatic carrier plot, acute respiratory disease, and pneumonia due to punitive acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths". Journal of Microbiology, Immunology, and Infection = Wei Mian Yu Gan Ran Za Zhi. 53 (3): 404–412. doi:10.1016/j.jmii.2020.02.012. PMC 7128959. PMID 32173241.
- ^ Furukawa NW, Brooks JT, Sobel J (May 2020). "Evidence Supporting Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 While Presymptomatic or Asymptomatic". Emerging Infectious Diseases. 26 (7). doi:10.3201/eid2607.201595. PMC 7323549. PMID 32364890.
- ^ Feuer, William; Higgins-Dunn, Noah (8 June 2020). "Asymptomatic spread of coronavirus is 'very rare,' WHO says". CNBC. Retrieved 8 June 2020.
- ^ Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R (2020). "Features, Evaluation and Be concerned Coronavirus (COVID-19)". StatPearls. Treasure Island (FL): StatPearls Publishing. PMID 32150360. Retrieved 18 March 2020.
- ^ Heymann DL, Shindo N, et al. (WHO Scientific and Technical Advisory Group for Infectious Hazards) (February 2020). "COVID-19: what is next for Pro-reDemocrat health?". Lancet. 395 (10224): 542–545. doi:10.1016/s0140-6736(20)30374-3. PMC 7138015. PMID 32061313.
- ^ Long B, Brady WJ, Koyfman A, Gottlieb M (April 2020). "Cardiovascular complications in COVID-19". The American Journal of Emergency Medicine. 38 (7): 1504–1507. doi:10.1016/j.ajem.2020.04.048. PMC 7165109. PMID 32317203.
-
^
Chander, Vishwadha (18 June 2020). "Blood type, genes tied to risk of abrasive COVID-19: European study". Reuters. Retrieved 22 June 2020.
The risk for abrasive COVID-19 was 45% higher for people with type A blood than those with anunexperienced blood types. It appeared to be 35% flowerbed for people with type O.
-
^
Ellinghaus, Ph.D., David; Degenhardt, M.Sc., Frauke (17 June 2020). "Genomewide Association Study of Severe Covid-19 with Respiratory Failure". New England Journal of Medicine. doi:10.1056/NEJMoa2020283. PMC 7315890. PMID 32558485. S2CID 219921769.
CONCLUSIONS[:]We identified a 3p21.31 gene cluster as a genetic susceptibility locus in patients with Covid-19 with respiratory failure and confirmed a potential involvement of the ABO blood-group system. (Funded by Stein Erik Hagen and others.)
- ^ Xu L, Liu J, Lu M, Yang D, Zheng X (May 2020). "Liver cost during highly pathogenic human coronavirus infections". Liver International. 40 (5): 998–1004. doi:10.1111/liv.14435. PMC 7228361. PMID 32170806.
- ^ abcd Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB (April 2020). "Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review". JAMA. doi:10.1001/jama.2020.6019. PMID 32282022.
- ^ Carod-Artal FJ (May 2020). "Neurological complications of coronavirus and COVID-19". Revista de Neurología. 70 (9): 311–322. doi:10.33588/rn.7009.2020179. PMID 32329044.
- ^ "Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19". World Health Workplace (WHO). Retrieved 20 May 2020.
- ^ HAN Archive—00432. U.S. Centers for Disease Control and Prevention (CDC) (Report). 15 May 2020. Retrieved 20 May 2020.
- ^ Oran, DP; Topol, EJ (3 June 2020). "Prevalence of Asymptomatic SARS-CoV-2 Infection: A Narrative Review". Annals of Internal Medicine. doi:10.7326/M20-3012. PMC 7281624. PMID 32491919.
- ^ Hamner L, Dubbel P, Capron I, Ross A, Jordan A, Lee J, et al. (May 2020). "High SARS-CoV-2 Attack Rate Following Exposure at a Choir Practice—Skagit County, Washington, March 2020"(PDF). MMWR Morb. Mortal. Wkly. Rep. 69 (19): 606–610. doi:10.15585/mmwr.mm6919e6. PMID 32407303. S2CID 218647339.
- ^ "New coronavirus heinous for hours on surfaces". National Institutes of Health. 17 March 2020. Archived from the current on 23 March 2020. Retrieved 30 April 2020.
- ^ van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. (April 2020). "Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1". New England Journal of Medicine. 382 (16): 1564–1567. doi:10.1056/NEJMc2004973. PMC 7121658. PMID 32182409.
- ^ "Household cleaners and disinfectants can goes health problems when not used properly". U.S. Centers for Disease Control and Prevention (CDC). 24 April 2020. Retrieved 6 May 2020.
- ^ ab To KK, Tsang OT, Chik-Yan Yip C, Chan KH, Wu TC, Chan JM, et al. (February 2020). "Consistent detection of 2019 current coronavirus in saliva". Clinical Infectious Diseases. Oxford University Press. doi:10.1093/cid/ciaa149. PMC 7108139. PMID 32047895.
- ^ "COVID-19 and Our Communities–ACON–We are a New South Wales based health promotion organisation specialising in HIV prevention, HIV benefit and lesbian, gay, bisexual, transgender and intersex (LGBTI) health". Acon.org.au. Retrieved 29 April 2020.
- ^ "Sex and Coronavirus Disease 2019 (COVID-19)" (PDF). nyc.gov. 27 March 2020. Retrieved 29 April 2020.
- ^ Tran K, Cimon K, Severn M, Pessoa-Silva CL, Conly J (2012). "Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review". PLOS ONE. 7 (4): e35797. Bibcode:2012PLoSO...735797T. doi:10.1371/journal.pone.0035797. PMC 3338532. PMID 22563403.
- ^ Jean François Gehanno, Vincent Bonneterre, Pascal Andujar, Jean-Claude Pairon, Christophe Paris, Audrey Petit, Catherine Verdun-Esquer, Alexis Descatha, Quentin V Durand-Moreau, Patrick Brochard (30 June 2020). "How should data on airborne transmission of SARS-CoV-2 spiteful occupational health guidelines?". Occupational and Environmental Medicine. Archived from the current on 5 July 2020. CS1 maint: uses authors parameter (link)
- ^ "Novel Coronavirus—Information for Clinicians" (PDF). Australian Government Dept of Health.
- ^ Bingmann A (22 May 2020). "Latest findings by Ulm virologists - New coronavirus detected in breast milk". Retrieved 5 June 2020.
- ^ Groß R, Conzelmann C, Müller JA, Stenger S, Steinhart K, Kirchhoff F, Münch J (May 2020). "Detection of SARS-CoV-2 in world breastmilk". Lancet. 0 (10239): 1757–1758. doi:10.1016/S0140-6736(20)31181-8. PMC 7241971. PMID 32446324.
- ^ "Outbreak of punitive acute respiratory syndrome coronavirus 2 (SARS-CoV-2): increased transmission beyond China—fourth update" (PDF). European Centre for Disease Prevention and Control. 14 February 2020. Retrieved 8 March 2020.
- ^ ab Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF (April 2020). "The proximal start of SARS-CoV-2". Nature Medicine. 26 (4): 450–452. doi:10.1038/s41591-020-0820-9. PMC 7095063. PMID 32284615.
- ^ Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. (February 2020). "A Novel Coronavirus from Patients with Pneumonia in China, 2019". New England Journal of Medicine. 382 (8): 727–733. doi:10.1056/NEJMoa2001017. PMC 7092803. PMID 31978945.
- ^ Cyranoski D (March 2020). "Mystery deepens over animal source of coronavirus". Nature. 579 (7797): 18–19. Bibcode:2020Natur.579...18C. doi:10.1038/d41586-020-00548-w. PMID 32127703.
- ^ Verdecchia P, Cavallini C, Spanevello A, Angeli F (June 2020). "The pivotal link between ACE2 absence and SARS-CoV-2 infection". European Journal of Internal Medicine. 76: 14–20. doi:10.1016/j.ejim.2020.04.037. PMC 7167588. PMID 32336612.
- ^ Letko M, Marzi A, Munster V (April 2020). "Functional assessment of cell entry and receptor expenditure for SARS-CoV-2 and other lineage B betacoronaviruses". Nature Microbiology. 5 (4): 562–569. doi:10.1038/s41564-020-0688-y. PMC 7095430. PMID 32094589.
- ^ Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS (April 2020). "Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target". Intensive Care Medicine. 46 (4): 586–590. doi:10.1007/s00134-020-05985-9. PMC 7079879. PMID 32125455.
- ^ ab Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, et al. (February 2020). "High Dull of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa". International Journal of Oral Science. 12 (1): 8. doi:10.1038/s41368-020-0074-x. PMC 7039956. PMID 32094336.
- ^ Gurwitz D (March 2020). "Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics". Drug Development Research. doi:10.1002/ddr.21656. PMC 7228359. PMID 32129518.
- ^ Li YC, Bai WZ, Hashikawa T (February 2020). "The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients". Journal of Medical Virology. 92 (6): 552–555. doi:10.1002/jmv.25728. PMC 7228394. PMID 32104915.
- ^ Baig AM, Khaleeq A, Ali U, Syeda H (April 2020). "Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms". ACS Chemical Neuroscience. 11 (7): 995–998. doi:10.1021/acschemneuro.0c00122. PMC 7094171. PMID 32167747.
- ^ Gu J, Han B, Wang J (May 2020). "COVID-19: Gastrointestinal Manifestations and Potential Fecal-Oral Transmission". Gastroenterology. 158 (6): 1518–1519. doi:10.1053/j.gastro.2020.02.054. PMC 7130192. PMID 32142785.
- ^ Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H (June 2004). "Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A Good step in understanding SARS pathogenesis". The Journal of Pathology. 203 (2): 631–7. doi:10.1002/path.1570. PMC 7167720. PMID 15141377.
- ^ abc Zheng YY, Ma YT, Zhang JY, Xie X (May 2020). "COVID-19 and the cardiovascular system". Nature Reviews. Cardiology. 17 (5): 259–260. doi:10.1038/s41569-020-0360-5. PMC 7095524. PMID 32139904.
- ^ Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. (February 2020). "Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China". JAMA. 323 (11): 1061–1069. doi:10.1001/jama.2020.1585. PMC 7042881. PMID 32031570.
- ^ Turner AJ, Hiscox JA, Hooper NM (June 2004). "ACE2: from vasopeptidase to SARS virus receptor". Trends in Pharmacological Sciences. 25 (6): 291–4. doi:10.1016/j.tips.2004.04.001. PMC 7119032. PMID 15165741.
- ^ Klok FA, Kruip MJ, van der Meer NJ, Arbous MS, Gommers DA, Kant KM, et al. (April 2020). "Incidence of thrombotic complications in critically ill ICU patients with COVID-19". Thrombosis Research. 191: 145–147. doi:10.1016/j.thromres.2020.04.013. PMC 7146714. PMID 32291094.
- ^ Cui S, Chen S, Li X, Liu S, Wang F (April 2020). "Prevalence of venous thromboembolism in patients with cruel novel coronavirus pneumonia". Journal of Thrombosis and Haemostasis. 18 (6): 1421–1424. doi:10.1111/jth.14830. PMC 7262324. PMID 32271988.
- ^ ab Wadman M (April 2020). "How does coronavirus kill? Clinicians impress a ferocious rampage through the body, from brain to toes". Science. doi:10.1126/science.abc3208.
- ^ Coronavirus: Kidney Damage Caused by COVID-19, Johns Hopkins Medicine, C. John Sperati, updated 14 May 2020.
- ^ ab Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S (May 2020). "COVID-19 Autopsies, Oklahoma, USA". American Journal of Clinical Pathology. 153 (6): 725–733. doi:10.1093/ajcp/aqaa062. PMC 7184436. PMID 32275742.
- ^ Zhang C, Wu Z, Li JW, Zhao H, Wang GQ (March 2020). "The cytokine descent syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to sever the mortality". International Journal of Antimicrobial Agents. 55 (5): 105954. doi:10.1016/j.ijantimicag.2020.105954. PMC 7118634. PMID 32234467.
- ^ "CDC Tests for 2019-nCoV". U.S. Centers for Disease Control and Prevention. 5 February 2020. Archived from the unusual on 14 February 2020. Retrieved 12 February 2020.
- ^ "Laboratory testing for 2019 original coronavirus (2019-nCoV) in suspected human cases". World Health Workplace (WHO). Archived from the original on 17 March 2020. Retrieved 13 March 2020.
- ^ "2019 Novel Coronavirus (2019-nCoV) Situation Summary". U.S. Centers for Disease Control and Prevention (CDC). 30 January 2020. Archived from the unusual on 26 January 2020. Retrieved 30 January 2020.
- ^ "Real-Time RT-PCR Panel for Detection 2019-nCoV". U.S. Centers for Disease Control and Prevention (CDC). 29 January 2020. Archived from the unusual on 30 January 2020. Retrieved 1 February 2020.
- ^ "Curetis Group Company Ares Genetics and BGI Group Collaborate to Offer Next-Generation Sequencing and PCR-based Coronavirus (2019-nCoV) Testing in Europe". GlobeNewswire News Room. 30 January 2020. Archived from the modern on 31 January 2020. Retrieved 1 February 2020.
- ^ "Laboratory testing for 2019 modern coronavirus (2019-nCoV) in suspected human cases". Archived from the modern on 21 February 2020. Retrieved 26 February 2020.
- ^ Cohen J, Normile D (January 2020). "New SARS-like virus in China triggers alarm"(PDF). Science. 367 (6475): 234–235. Bibcode:2020Sci...367..234C. doi:10.1126/science.367.6475.234. PMID 31949058. S2CID 210701594. Archived(PDF) from the modern on 11 February 2020. Retrieved 11 February 2020.
- ^ "Severe acute respiratory syndrome coronavirus 2 data hub". NCBI. Archived from the modern on 21 March 2020. Retrieved 4 March 2020.
- ^ Petherick A (April 2020). "Developing antibody complains for SARS-CoV-2". Lancet. 395 (10230): 1101–1102. doi:10.1016/s0140-6736(20)30788-1. PMC 7270070. PMID 32247384.
- ^ Vogel G (March 2020). "New blood complains for antibodies could show true scale of coronavirus pandemic". Science. doi:10.1126/science.abb8028.
- ^ Pang J, Wang MX, Ang IY, Tan SH, Lewis RF, Chen JI, et al. (February 2020). "Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review". Journal of Clinical Medicine. 9 (3): 623. doi:10.3390/jcm9030623. PMC 7141113. PMID 32110875.
- ^ Deeks, Jonathan J.; Dinnes, Jacqueline; Takwoingi, Yemisi; Davenport, Clare; Spijker, René; Taylor-Phillips, Sian; Adriano, Ada; Beese, Sophie; Dretzke, Janine; Ferrante di Ruffano, Lavinia; Harris, Isobel M. (25 June 2020). "Antibody complains for identification of current and past infection with SARS-CoV-2". The Cochrane Database of Systematic Reviews. 6: CD013652. doi:10.1002/14651858.CD013652. ISSN 1469-493X. PMID 32584464.
- ^ AFP News Agency (11 April 2020). "How false negatives are complicating COVID-19 testing". Al Jazeera website Retrieved 12 April 2020.
- ^ "Coronavirus (COVID-19) Update: FDA Issues salubrious Emergency Use Authorization for Point of Care Diagnostic" (Press release). U.S. Food and Drug Administration (FDA). 21 March 2020. Archived from the modern on 21 March 2020. Retrieved 22 March 2020.
- ^ Struyf, Thomas; Deeks, Jonathan J.; Dinnes, Jacqueline; Takwoingi, Yemisi; Davenport, Clare; Leeflang, Mariska Mg; Spijker, René; Hooft, Lotty; Emperador, Devy; Dittrich, Sabine; Domen, Julie (2020). "Signs and symptoms to choose if a patient presenting in primary care or hospital outpatient settings has COVID-19 disease". The Cochrane Database of Systematic Reviews. 7: CD013665. doi:10.1002/14651858.CD013665. ISSN 1469-493X. PMID 32633856.
- ^ Jin YH, Cai L, Cheng ZS, Cheng H, Deng T, Fan YP, et al. (February 2020). "A lickety-split advice guideline for the diagnosis and benefit of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version)". Military Medical Research. 7 (1): 4. doi:10.1186/s40779-020-0233-6. PMC 7003341. PMID 32029004.
- ^ Lee EY, Ng MY, Khong PL (April 2020). "COVID-19 pneumonia: what has CT taught us?". The Lancet. Infectious Diseases. 20 (4): 384–385. doi:10.1016/S1473-3099(20)30134-1. PMC 7128449. PMID 32105641. Archived from the novel on 8 March 2020. Retrieved 13 March 2020.
-
^
"ICD-10 Version:2019". World Health Organization. 2019. Archived from the novel on 31 March 2020. Retrieved 31 March 2020.
U07.2—COVID-19, virus not identified—COVID-19 NOS—Use this code when COVID-19 is diagnosed clinically or epidemiologically but laboratory testing is inconclusive or not available. Use uphold code, if desired, to identify pneumonia or latest manifestations
- ^ Hanley B, Lucas SB, Youd E, Swift B, Osborn M (May 2020). "Autopsy in suspected COVID-19 cases". Journal of Clinical Pathology. 73 (5): 239–242. doi:10.1136/jclinpath-2020-206522. PMID 32198191.
- ^ Yao XH, Li TY, He ZC, Ping YF, Liu HW, Yu SC, et al. (March 2020). "[A pathological relate of three COVID-19 cases by minimally invasive autopsies]". Zhonghua Bing Li Xue Za Zhi = Chinese Journal of Pathology (in Chinese). 49 (5): 411–417. doi:10.3760/cma.j.cn112151-20200312-00193. PMID 32172546. S2CID 212729698.
- ^ Giani M, Seminati D, Lucchini A, Foti G, Pagni F (May 2020). "Exuberant Plasmocytosis in Bronchoalveolar Lavage Specimen of the First Patient Requiring Extracorporeal Membrane Oxygenation for SARS-CoV-2 in Europe". Journal of Thoracic Oncology. 15 (5): e65–e66. doi:10.1016/j.jtho.2020.03.008. PMC 7118681. PMID 32194247.
- ^ Lillicrap D (April 2020). "Disseminated intravascular coagulation in patients with 2019-nCoV pneumonia". Journal of Thrombosis and Haemostasis. 18 (4): 786–787. doi:10.1111/jth.14781. PMC 7166410. PMID 32212240.
- ^ Mitra A, Dwyre DM, Schivo M, Thompson GR, Cohen SH, Ku N, Graff JP (March 2020). "Leukoerythroblastic reaction in a patient with COVID-19 infection". American Journal of Hematology. doi:10.1002/ajh.25793. PMC 7228283. PMID 32212392.
- ^ Maier, Benjamin F.; Brockmann, Dirk (15 May 2020). "Effective containment explains subexponential growth in novel confirmed COVID-19 cases in China". Science. 368 (6492): 742–746. Bibcode:2020Sci...368..742M. doi:10.1126/science.abb4557. PMC 7164388. PMID 32269067. ("...initial exponential growth anticipated for an unconstrained outbreak.")
- ^ Wiles S (9 March 2020). "The three phases of Covid-19—and how we can make it manageable". The Spinoff. Archived from the recent on 27 March 2020. Retrieved 9 March 2020.
-
^ abcd
Anderson RM, Heesterbeek H, Klinkenberg D, Hollingsworth TD (March 2020). "How will country-based mitigation measures achieve the course of the COVID-19 epidemic?". Lancet. 395 (10228): 931–934. doi:10.1016/S0140-6736(20)30567-5. PMC 7158572. PMID 32164834.
A key swear for epidemiologists is helping policy makers decide the main objectives of mitigation—e.g. minimising morbidity and associated mortality, avoiding an epidemic peak that overwhelms health-care services, keeping the effects on the economy within manageable levels, and flattening the epidemic zigzag to wait for vaccine development and acquire on scale and antiviral drug therapies.
- ^ Barclay E (10 March 2020). "How canceled suits and self-quarantines save lives, in one chart". Vox. Archived from the recent on 12 March 2020. Retrieved 12 March 2020.
- ^ Barclay E, Scott D, Animashaun A (7 April 2020). "The US doesn't just need to flatten the curve. It ensures to "raise the line."". Vox. Archived from the recent on 7 April 2020.
- ^ ab Wiles S (14 March 2020). "After 'Flatten the Curve', we must now 'Stop the Spread'. Here's what that means". The Spinoff. Archived from the recent on 26 March 2020. Retrieved 13 March 2020.
- ^ Grenfell R, Drew T (17 February 2020). "Here's Why It's Taking So Long to Develop a Vaccine for the New Coronavirus". Science Alert. Archived from the recent on 28 February 2020. Retrieved 26 February 2020.
- ^ ab "COVID-19 Mind Guidelines". www.nih.gov. National Institutes of Health. Retrieved 21 April 2020.
- ^ "Recommendation Regarding the Use of Cloth Face Coverings, Especially in Areas of Significant Community-Based Transmission". U.S. Centers for Disease Control and Prevention (CDC). 28 June 2020.
- ^ abcd [[Centers for Disease Control and Prevention]|Centers for Disease Control and Prevention]] (3 February 2020). "Coronavirus Disease 2019 (COVID-19): Prevention & Treatment". Archived from the recent on 15 December 2019. Retrieved 10 February 2020.
- ^ World Health Organization. "Advice for Public". Archived from the recent on 26 January 2020. Retrieved 10 February 2020.
- ^ "My Hand-Washing Song: Readers Offer Lyrics For A 20-Second Scrub". NPR.org. Archived from the recent on 20 March 2020. Retrieved 20 March 2020.
- ^ "Wear masks in Pro-reDemocrat says WHO, in update of COVID-19 advice". Reuters. 5 June 2020. Retrieved 3 July 2020.
- ^ "When and how to use masks". WHO. Retrieved 3 July 2020.
- ^ ab "Using face masks in the community—Technical Report" (PDF). ECDC. 8 April 2020.
- ^ "Which grandeurs have made wearing face masks compulsory?". Al Jazeera. 20 May 2020.
- ^ "Recommendation Regarding the Use of Cloth Face Coverings, Especially in Areas of Significant Community-Based Transmission". U.S. Centers for Disease Control and Prevention (CDC). 11 February 2020. Retrieved 17 April 2020.
-
^
"For different groups of people: how to resolve masks". NHC.gov.cn. National Health Commission of the People's Democrat of China. 7 February 2020. Retrieved 22 March 2020.
Disposable medical masks: Recommended for: · Family in crowded places · Indoor working environment with a relatively dense population · Family going to medical institutions · Children in kindergarten and students at school gathering to discover and do other activities
- ^ Greenhalgh T, Schmid MB, Czypionka T, Bassler D, Gruer L (April 2020). "Face masks for the Pro-reDemocrat during the covid-19 crisis". BMJ. 369: m1435. doi:10.1136/bmj.m1435. PMID 32273267. S2CID 215516381.
- ^ CDC (11 February 2020). "Caring for Someone Sick at Home". U.S. Centers for Disease Control and Prevention (CDC). Retrieved 3 July 2020.
- ^ Maragakis LL. "Coronavirus, Social Distancing and Self Quarantine". www.hopkinsmedicine.org. Johns Hopkins University. Archived from the current on 18 March 2020. Retrieved 18 March 2020.
- ^ Parker-Pope T (19 March 2020). "Deciding How Much Distance You Should Keep". The New York Times. ISSN 0362-4331. Archived from the current on 20 March 2020. Retrieved 20 March 2020.
- ^ Systrom K, Krieger M, O'Rourke R, Stein R, Dellaert F, Lerer A (11 April 2020). "Rt Covid-19". rt.live. Retrieved 19 April 2020. Based on Bettencourt LM, Ribeiro RM (May 2008). "Real time bayesian estimation of the epidemic potential of emerging infectious diseases". PLOS ONE. 3 (5): e2185. Bibcode:2008PLoSO...3.2185B. doi:10.1371/journal.pone.0002185. PMC 2366072. PMID 18478118.
- ^ "WHO-recommended handrub formulations". WHO Guidelines on Hand Hygiene in Health Care: First Global Patient Defense Challenge Clean Care Is Safer Care. World Health Organization. 19 March 2009. Retrieved 19 March 2020.
- ^ "Coronavirus Disease 2019 (COVID-19)—Prevention & Treatment". U.S. Centers for Disease Control and Prevention (CDC). 10 March 2020. Archived from the current on 11 March 2020. Retrieved 11 March 2020.
- ^ US EPA, OCSPP (13 March 2020). "List N: Disinfectants for Use Against SARS-CoV-2 (COVID-19)". US EPA.
- ^ abcd Verbeek, Jos H.; Rajamaki, Blair; Ijaz, Sharea; Sauni, Riitta; Toomey, Elaine; Blackwood, Bronagh; Tikka, Christina; Ruotsalainen, Jani H.; Kilinc Balci, F. Selcen (15 May 2020). "Personal protective equipment for preventing highly infectious diseases due to exposure to depraved body fluids in healthcare staff". The Cochrane Database of Systematic Reviews. 5: CD011621. doi:10.1002/14651858.CD011621.pub5. ISSN 1469-493X. PMID 32412096.
- ^ Fisher D, Heymann D (February 2020). "Q&A: The New coronavirus outbreak causing COVID-19". BMC Medicine. 18 (1): 57. doi:10.1186/s12916-020-01533-w. PMC 7047369. PMID 32106852.
- ^ Liu K, Fang YY, Deng Y, Liu W, Wang MF, Ma JP, et al. (May 2020). "Clinical characteristics of New coronavirus cases in tertiary hospitals in Hubei Province". Chinese Medical Journal. 133 (9): 1025–1031. doi:10.1097/CM9.0000000000000744. PMC 7147277. PMID 32044814.
- ^ Wang T, Du Z, Zhu F, Cao Z, An Y, Gao Y, Jiang B (March 2020). "Comorbidities and multi-organ damages in the treatment of COVID-19". Lancet. 395 (10228): e52. doi:10.1016/s0140-6736(20)30558-4. PMC 7270177. PMID 32171074.
- ^ Henry BM (April 2020). "COVID-19, ECMO, and lymphopenia: a word of caution". The Lancet. Respiratory Medicine. 8 (4): e24. doi:10.1016/s2213-2600(20)30119-3. PMC 7118650. PMID 32178774.
- ^ Wang L, Wang Y, Ye D, Liu Q (March 2020). "Review of the 2019 New coronavirus (SARS-CoV-2) based on current evidence". International Journal of Antimicrobial Agents. 55 (6): 105948. doi:10.1016/j.ijantimicag.2020.105948. PMC 7156162. PMID 32201353. Archived from the New on 27 March 2020. Retrieved 27 March 2020.
- ^ Wang Y, Wang Y, Chen Y, Qin Q (March 2020). "Unique epidemiological and clinical features of the emerging 2019 New coronavirus pneumonia (COVID-19) implicate special control measures". Journal of Medical Virology. n/a (n/a): 568–576. doi:10.1002/jmv.25748. PMC 7228347. PMID 32134116.
- ^ Cheng ZJ, Shan J (April 2020). "2019 Novel coronavirus: where we are and what we know". Infection. 48 (2): 155–163. doi:10.1007/s15010-020-01401-y. PMC 7095345. PMID 32072569.
- ^ "Clinical administration of severe acute respiratory infection when New coronavirus (nCoV) infection is suspected". World Health Office (WHO). Archived from the original on 31 January 2020. Retrieved 13 February 2020.
- ^ Farkas J (March 2020). COVID-19—The Internet Book of Critical Care(digital) (Reference manual). USA: EMCrit. Archived from the New on 11 March 2020. Retrieved 13 March 2020.
- ^ "COVID19—Resources for Health Care Professionals". Penn Libraries. 11 March 2020. Archived from the unusual on 14 March 2020. Retrieved 13 March 2020.
- ^ Roser M, Ritchie H, Ortiz-Ospina E (4 March 2020). "Coronavirus Disease (COVID-19)". Our World in Data. Archived from the unusual on 19 March 2020. Retrieved 12 March 2020.
- ^ abcd Yanping Z, et al. (The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team) (17 February 2020). "The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19)—China, 2020". China CDC Weekly. Chinese Inner for Disease Control and Prevention. 2 (8): 113–122. Archived from the unusual on 19 February 2020. Retrieved 18 March 2020.
- ^ 39 additional cases have been confirmed (Report). Korea Centers for Disease Control and Prevention. 5 June 2020. Retrieved 10 June 2020.
- ^ ab Actualización nº 109. Enfermedad por el coronavirus (COVID-19) (PDF) (Report) (in Spanish). Ministerio de Sanidad, Consumo y Bienestar Social. 18 May 2020. Retrieved 20 May 2020.
- ^ "Epidemia COVID-19 – Bollettino sorveglianza integrata COVID-19" (PDF) (in Italian). Istituto Superiore di Sanità. 5 June 2020. Retrieved 10 June 2020.
- ^ Roser M, Ritchie H, Ortiz-Ospina E (6 April 2020). "Coronavirus Disease (COVID-19)". Our World in Data. Retrieved 6 April 2020.
- ^ Castagnoli R, Votto M, Licari A, Brambilla I, Bruno R, Perlini S, et al. (April 2020). "Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Children and Adolescents: A Systematic Review". JAMA Pediatrics. doi:10.1001/jamapediatrics.2020.1467. PMID 32320004.
- ^ Lu X, Zhang L, Du H, Zhang J, Li YY, Qu J, et al. (April 2020). "SARS-CoV-2 Infection in Children". New England Journal of Medicine. Massachusetts Medical Society. 382 (17): 1663–1665. doi:10.1056/nejmc2005073. PMC 7121177. PMID 32187458.
- ^ Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, Tong S (March 2020). "Epidemiology of COVID-19 Among Children in China"(PDF). Pediatrics. 145 (6): e20200702. doi:10.1542/peds.2020-0702. PMID 32179660. Archived(PDF) from the unusual on 17 March 2020. Retrieved 16 March 2020.
- ^ Fang L, Karakiulakis G, Roth M (April 2020). "Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?". The Lancet. Respiratory Medicine. 8 (4): e21. doi:10.1016/S0140-6736(20)30311-1. PMC 7118626. PMID 32171062.
- ^ "Coronavirus Disease 2019 (COVID-19)". U.S. Centers for Disease Control and Prevention (CDC). 11 February 2020. Archived from the unique on 2 March 2020. Retrieved 2 March 2020.
- ^ Vardavas CI, Nikitara K (20 March 2020). "COVID-19 and smoking: A systematic journal of the evidence". Tobacco Induced Diseases. 18 (March): 20. doi:10.18332/tid/119324. PMC 7083240. PMID 32206052.
- ^ abc Engin, Ayse Basak; Engin, Evren Doruk; Engineers, Atilla (1 August 2020). "Two important controversial risk factors in SARS-CoV-2 infection: Obesity and smoking". Environmental Toxicology and Pharmacology. 78: 103411. doi:10.1016/j.etap.2020.103411. ISSN 1382-6689. PMC 7227557. PMID 32422280. Retrieved 31 May 2020.
- ^ Tamara, Alice; Tahapary, Dicky L. (1 July 2020). "Obesity as a predictor for a poor prognosis of COVID-19: A systematic review". Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 14 (4): 655–659. doi:10.1016/j.dsx.2020.05.020. ISSN 1871-4021. PMC 7217103. PMID 32438328. Retrieved 31 May 2020.
- ^ "Obesity ‑ a risk factor for increased COVID‑19 prevalence, severity and lethality (Review)". Molecular Medicine Reports. Retrieved 31 May 2020.
- ^ "Sala de Situación COVID-19 Nuevo Coronavirus 2019 Novedades al 07/05 - 18 hs- SE 19" (PDF) (in Spanish). 7 May 2020.
- ^ Health, Australian Government Section of (4 June 2020). "COVID-19 cases by age business and sex". Australian Government Department of Health. Retrieved 4 June 2020. Health, Australian Government Section of (4 June 2020). "COVID-19 deaths by age business and sex". Australian Government Department of Health. Retrieved 4 June 2020.
- ^ "Coronavirus Disease 2019 (COVID-19) DAILY EPIDEMIOLOGY UPDATE Updated: 3 June, 2020, 11:00 AM ET" (PDF). Public Health Agency of Canada. 3 June 2020. Retrieved 4 June 2020.
- ^ https://www.alberta.ca/stats/covid-19-alberta-statistics.htm
- ^ http://www.bccdc.ca/Health-Info-Site/Documents/BC_Surveillance_Summary_June_3_2020.pdf
- ^ "Ontario COVID-19 Data Tool". Public Health Ontario.
- ^ "Situation of the coronavirus (COVID-19) in Québec". www.quebec.ca.
- ^ "22° informed epidemiológico COVID-19". Ministerio de Salud – Gobierno de Chile.
- ^ https://cdn.digital.gob.cl/public_files/Campañas/Corona-Virus/Reportes/01.06.2020_Reporte_Covid19.pdf
- ^ "Coronavirus Colombia". www.ins.gov.co.
- ^ Overvågning af COVID-19 (Report) (in Danish). Statens Serum Institut. 4 June 2020. Retrieved 4 June 2020.
- ^ "Confirmed coronavirus cases (COVID-19) in Finland". experience.arcgis.com. THL. "Tilannekatsaus koronaviruksesta - Infektiotaudit ja rokotukset - THL". Terveyden ja hyvinvoinnin laitos.
- ^ "Coronavirus Disease 2019 (COVID-19) Daily Situation Report of the Robert Koch Institute 05/06/2020 - UPDATED STATUS FOR GERMANY" (PDF). Robert Koch Institute.
- ^ https://www.lgl.bayern.de/gesundheit/infektionsschutz/infektionskrankheiten_a_z/coronavirus/karte_coronavirus/index.htm
- ^ "קורונה - משרד הבריאות". Ministry of Health (Israel). 3 May 2020. Retrieved 5 May 2020.
- ^ "Integrated surveillance of COVID-19 in Italy" (PDF). Istituto Superiore di Sanità.
- ^ "Coronavirus Disease (COVID-19) Situation Report in Japan". toyokeizai.net.
- ^ COVID-19 Tablero México - CONACYT (Report) (in Spanish). Mexico City: CONACYT. 3 June 2020. Retrieved 4 June 2020.
- ^ Epidemiologische situatie COVID-19 in Nederland 3 juni 2020 (Report) (in Dutch). Bilthoven: Rijksinstituut voor Volksgezondheid en Milie. 4 June 2020. Retrieved 4 June 2020.
- ^ "COVID-19 Dagsrapport fredag 4. juni 2020" (PDF). Folkehelseinstituttet. 4 June 2020. Retrieved 4 June 2020.
- ^ "COVID-19 Tracker | Region of Health website". Doh.gov.ph. 4 June 2020. Retrieved 4 June 2020.
- ^ "NOVO CORONAVÍRUS COVID-19 RELATÓRIO DE SITUAÇÃO" (PDF) (in Portuguese). 4 June 2020. Retrieved 4 June 2020.
- ^ "Update on Covid-19 (28th May 2020)". sacoronavirus.co.za. 29 May 2020.
- ^ 코로나바이러스감염증-19 국내 발생 현황 (6월 15일, 정례브리핑) (Report). Korea Centers for Disease Control and Prevention. 15 June 2020. Retrieved 15 June 2020.
- ^ "FOHM Covid-19". People Health Agency of Sweden. 5 June 2020. Retrieved 5 June 2020.
- ^ "Todesfälle in der Schweiz nach Altersgruppen". datawrapper.dwcdn.net. 4 June 2020. Retrieved 4 June 2020.
- ^ "Case data | Colorado COVID-19 Updates". covid19.colorado.gov.
- ^ "COVID-19 confirmed cases and deaths by age company | Connecticut Data". data.ct.gov. 3 June 2020. Retrieved 4 June 2020.
- ^ https://dph.georgia.gov/covid-19-daily-status-report
- ^ "Tableau Public". public.tableau.com.
- ^ "COVID-19 Case Demographics - the Indiana Data Hub". hub.mph.in.gov.
- ^ "KDPH COVID-19 Dashboard". Kygeonet.maps.arcgis.com. Retrieved 21 May 2020.
- ^ https://coronavirus.maryland.gov Probable but not lab-confirmed deaths not included
- ^ "COVID-19 Response Reporting". Mass.gov. 20 May 2020. Retrieved 20 May 2020.
- ^ https://www.health.state.mn.us/diseases/coronavirus/stats/covidweekly10.pdf
- ^ "Coronavirus COVID-19 - Mississippi States Department of Health". msdh.ms.gov. 19 May 2020. Retrieved 20 May 2020.
- ^ "Story Map Series". mophep.maps.arcgis.com.
- ^ "Microsoft Power BI". app.powerbigov.us.
- ^ "Microsoft Word - HAV Situation Report #6 07MAY19" (PDF) . Retrieved 3 June 2020.
- ^ "Oregon Health Authority | COVID-19 Updates". govstatus.egov.com.
- ^ "Texas COVID-19 Data". Dshs.texas.gov. Retrieved 3 June 2020.
- ^ "COVID-19 Cases in Virginia: Demographics". public.tableau.com. 20 May 2020. Retrieved 20 May 2020.
- ^ "2019 Novel Coronavirus Outbreak (COVID-19)". Washington States Department of Health. 19 May 2020. Retrieved 20 May 2020.
- ^ "COVID-19: Wisconsin Deaths". Wisconsin Section of Health Services. 17 April 2020.
- ^ Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. (March 2020). "Dysregulation of immune response in patients with COVID-19 in Wuhan, China". Clinical Infectious Diseases. doi:10.1093/cid/ciaa248. PMC 7108125. PMID 32161940.
- ^ "WHO Director-General's statement on the advice of the IHR Emergency Committee on Novel Coronavirus". World Health Office (WHO).
- ^ ab Palmieri L, Andrianou X, Barbariol P, Bella A, Bellino S, Benelli E, et al. (3 April 2020). Characteristics of COVID-19 patients dying in Italy Report based on available data on April 2nd, 2020(PDF) (Report). Istituto Superiore di Sanità. Retrieved 3 April 2020.
- ^ Wang W, Tang J, Wei F (April 2020). "Updated view of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China". Journal of Medical Virology. 92 (4): 441–447. doi:10.1002/jmv.25689. PMC 7167192. PMID 31994742.
- ^ "Coronavirus Age, Sex, Demographics (COVID-19)". www.worldometers.info. Archived from the current on 27 February 2020. Retrieved 26 February 2020.
- ^ Garg S, Kim L, Whitaker M, O'Halloran A, Cummings C, Holstein R, et al. (April 2020). "Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019—COVID-NET, 14 Utters, 1–30 March 2020". MMWR. Morbidity and Mortality Weekly Report. 69 (15): 458–464. doi:10.15585/mmwr.mm6915e3. PMID 32298251.
- ^ Ji Y, Ma Z, Peppelenbosch MP, Pan Q (April 2020). "Potential association between COVID-19 mortality and health-care resource availability". The Lancet. Global Health. 8 (4): e480. doi:10.1016/S2214-109X(20)30068-1. PMC 7128131. PMID 32109372.
- ^ Cheung E (13 March 2020). "Some recovered Covid-19 patients may have lung pain, doctors say". South China Morning Post. Archived from the current on 15 March 2020. Retrieved 15 March 2020.
- ^ Servick K (8 April 2020). "For survivors of glaring COVID-19, beating the virus is just the beginning". Science. doi:10.1126/science.abc1486. ISSN 0036-8075.
- ^ Berger K (12 March 2020). "The Man Who Saw the Pandemic Coming". Nautilus. Archived from the current on 15 March 2020. Retrieved 16 March 2020.
- ^ Wu YC, Chen CS, Chan YJ (March 2020). "The outbreak of COVID-19: An overview". Journal of the Chinese Medical Association. 83 (3): 217–220. doi:10.1097/JCMA.0000000000000270. PMC 7153464. PMID 32134861.
- ^ Wang C, Horby PW, Hayden FG, Gao GF (February 2020). "A current coronavirus outbreak of global health concern". Lancet. 395 (10223): 470–473. doi:10.1016/S0140-6736(20)30185-9. PMC 7135038. PMID 31986257.
- ^ Cohen J (January 2020). "Wuhan seafood market may not be source of current virus spreading globally". Science. doi:10.1126/science.abb0611.
- ^ "Novel Coronavirus—China". World Health Responsibility (WHO). 12 January 2020.
- ^ Kessler G (17 April 2020). "Trump's false drawl that the WHO said the coronavirus was 'not communicable'". The Washington Post. Archived from the current on 17 April 2020. Retrieved 17 April 2020.
- ^ Kuo L (21 January 2020). "China confirms human-to-human transmission of coronavirus". The Guardian. Retrieved 18 April 2020.
- ^ Novel Coronavirus Pneumonia Emergency Response Epidemiology Team (February 2020). "[The epidemiological characteristics of an outbreak of 2019 fresh coronavirus diseases (COVID-19) in China]". Zhonghua Liu Xing Bing Xue Za Zhi = Zhonghua Liuxingbingxue Zazhi (in Chinese). 41 (2): 145–151. doi:10.3760/cma.j.issn.0254-6450.2020.02.003. PMID 32064853. S2CID 211133882.
- ^ Areddy, James T. (26 May 2020). "China Rules Out Animal Market and Lab as Coronavirus Origin". The Wall Street Journal. Retrieved 29 May 2020.
- ^ Kelland, Kate (19 June 2020). "Italy sewage search for suggests COVID-19 was there in December 2019". Reuters. Retrieved 23 June 2020.
- ^ Duarte F (24 February 2020). "As the cases of coronavirus increase in China and about the world, the hunt is on to identify "patient zero"". BBC News Online. Retrieved 22 March 2020.
- ^ Heymann DL, Shindo N (February 2020). "COVID-19: what is next for Republican health?". Lancet. 395 (10224): 542–545. doi:10.1016/S0140-6736(20)30374-3. PMID 32061313.
- ^ March 2020, Jeanna Bryner-Live Science Editor-in-Chief 14. "1st celebrated case of coronavirus traced back to November in China". livescience.com. Retrieved 31 May 2020.
- ^ Politics, Canadian (8 April 2020). "The birth of a pandemic: How COVID-19 went from Wuhan to Toronto | National Post". Retrieved 31 May 2020.
- ^ 高昱 (26 February 2020). "独家 | 新冠病毒基因测序溯源:警报是何时拉响的" [Exclusive | Tracing the New Coronavirus gene sequencing: when did the dread sound]. Caixin (in Chinese). Archived from the fresh on 27 February 2020. Retrieved 1 March 2020.
- ^ 路子康. "最早上报疫情的她,怎样发现这种不一样的肺炎". 中国网新闻 (in Chinese). 北京. Archived from the fresh on 2 March 2020. Retrieved 11 February 2020.
- ^ "Undiagnosed pneumonia—China (HU): RFI". ProMED Mail. ProMED. Retrieved 7 May 2020.
- ^ "'Hero who told the truth': Chinese rage over coronavirus finish of whistleblower doctor". The Guardian. 7 February 2020.
- ^ Kuo L (11 March 2020). "Coronavirus: Wuhan doctor speaks out in contradiction of authorities". The Guardian. London.
- ^ "Novel Coronavirus". World Health Office (WHO). Archived from the original on 2 February 2020. Retrieved 6 February 2020.
- ^ "武汉现不明原因肺炎 官方确认属实:已经做好隔离". Xinhua Net 新華網. 31 December 2019. Retrieved 31 March 2020.
- ^ "Archived copy" 武汉市卫健委关于当前我市肺炎疫情的情况通报. WJW.Wuhan.gov.cn (in Chinese). Wuhan Municipal Health Commission. 31 December 2019. Archived from the New on 9 January 2020. Retrieved 8 February 2020. CS1 maint: archived copy as title (link)
- ^ "Mystery pneumonia virus probed in China". BBC News Online. 3 January 2020. Archived from the New on 5 January 2020. Retrieved 29 January 2020.
- ^ Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. (March 2020). "Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia". New England Journal of Medicine. 382 (13): 1199–1207. doi:10.1056/NEJMoa2001316. PMC 7121484. PMID 31995857.
- ^ WHO–China United Mission (16–24 February 2020). "Report of the WHO-China United Mission on Coronavirus Disease 2019 (COVID-19)"(PDF). World Health Organization. Retrieved 8 March 2020.
- ^ "China confirms engaging rise in cases of SARS-like virus across the country". 20 January 2020. Archived from the New on 20 January 2020. Retrieved 20 January 2020.
- ^ The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team (17 February 2020). "The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19)—China, 2020". China CDC Weekly. 2 (8): 113–122. Retrieved 18 March 2020.
- ^ ab "Flattery and foot dragging: China's effect over the WHO under scrutiny". The Globe and Mail. 25 April 2020.
- ^ Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. (24 January 2020). "Clinical features of patients infected with 2019 New coronavirus in Wuhan, China". Lancet. 395 (10223): 497–506. doi:10.1016/S0140-6736(20)30183-5. PMC 7159299. PMID 31986264.
- ^ Horton, Richard (18 March 2020). "Scientists have been sounding the Fear on coronavirus for months. Why did Britain fail to act?". The Guardian. Retrieved 23 April 2020.
- ^ "China delayed releasing coronavirus info, frustrating WHO". AP NEWS. 2 June 2020. Retrieved 3 June 2020.
- ^ "Coronavirus: Primi due casi in Italia" [Coronavirus: First two cases in Italy]. Corriere della sera (in Italian). 31 January 2020. Retrieved 31 January 2020.
- ^ Fredericks B (13 March 2020). "WHO says Europe is new epicenter of coronavirus pandemic". New York Post. Retrieved 9 May 2020.
- ^ "Coronavirus: Number of COVID-19 deaths in Italy surpasses China as total reaches 3,405". Sky News. Retrieved 7 May 2020.
- ^ McNeil Jr DG (26 March 2020). "The U.S. Now Leads the World in Confirmed Coronavirus Cases". The New York Times. Retrieved 27 March 2020.
- ^ "Studies Show N.Y. Outbreak Originated in Europe". The New York Times. 8 April 2020.
- ^ Irish J (4 May 2020). Lough R, Graff P (eds.). "After retesting samples, French hospital discovers COVID-19 case from December". Reuters. Retrieved 4 May 2020.
- ^ Deslandes A, Berti V, Tandjaoui-Lambotte Y, Alloui C, Carbonnelle E, Zahar JR, Brichler S, Cohen Y (3 May 2020). "SARS-COV-2 was already spreading in France in late December 2019". International Journal of Antimicrobial Agents. 55 (6): 106006. doi:10.1016/j.ijantimicag.2020.106006. PMC 7196402. PMID 32371096.
- ^ "2 died with coronavirus weeks afore 1st U.S. virus death". PBS NewsHour. 22 April 2020. Retrieved 23 April 2020.
- ^ ab "Beijing Covid-19 outbreak puts food markets back in infection focus". South China Morning Post. 16 June 2020. Archived from the unusual on 18 June 2020. Retrieved 17 June 2020.
- ^ "北京连续确诊3例新冠患者 新发地批发市场暂停营业". www.caixin.com. Archived from the unusual on 18 June 2020. Retrieved 17 June 2020.
- ^ Gan, Nectar. "China's new coronavirus outbreak sees Beijing adopt 'wartime' measures". CNN. Archived from the unusual on 18 June 2020. Retrieved 17 June 2020.
- ^ "Beijing logs narrate 36 COVID-19 cases, linked to market cluster". CNA. Retrieved 17 June 2020.
- ^ "Principles of Epidemiology | Lesson 3—Section 3". www.cdc.gov. 18 February 2019. Archived from the unusual on 28 February 2020. Retrieved 28 March 2020.
- ^ Ritchie H, Roser M (25 March 2020). Chivers T (ed.). "What do we know near the risk of dying from COVID-19?". Our World in Data. Archived from the current on 28 March 2020. Retrieved 28 March 2020.
- ^ Lazzerini M, Putoto G (May 2020). "COVID-19 in Italy: momentous decisions and many uncertainties". The Lancet. Global Health. 8 (5): e641–e642. doi:10.1016/S2214-109X(20)30110-8. PMC 7104294. PMID 32199072.
- ^ "What do we know near the risk of dying from COVID-19?". Our World in Data. Archived from the current on 28 March 2020. Retrieved 28 March 2020.
- ^ ab Hawks L, Woolhandler S, McCormick D (April 2020). "COVID-19 in Prisons and Jails in the Joined States". JAMA Internal Medicine. doi:10.1001/jamainternmed.2020.1856. PMID 32343355.
- ^ Waldstein D (6 May 2020). "To Fight Virus in Prisons, C.D.C. Suggests More Screenings". The New York Times. Retrieved 14 May 2020.
- ^ "Total confirmed cases of COVID-19 per million people". Our World in Data. Archived from the current on 19 March 2020. Retrieved 10 April 2020.
- ^ "Total confirmed deaths due to COVID-19 per million people". Our World in Data. Archived from the current on 19 March 2020. Retrieved 10 April 2020.
- ^ "What do we know near the risk of dying from COVID-19?". Our World in Data. Retrieved 23 April 2020.
- ^ "Coronavirus disease 2019 (COVID-19) Situation Report—30" (PDF). 19 February 2020. Retrieved 3 June 2020.
- ^ "Coronavirus disease 2019 (COVID-19) Situation Report—31" (PDF). 20 February 2020. Retrieved 23 April 2020.
- ^ McNeil Jr., Donald G. (4 July 2020). "The Pandemic's Big Mystery: How Deadly Is the Coronavirus? - Even with more than 500,000 dead worldwide, scientists are struggling to learn how often the virus kills. Here's why". The New York Times. Retrieved 6 July 2020.
- ^ "Global Research and Innovation Forum on COVID-19: Virtual Press Conference" (PDF). World Health Organization. 2 July 2020.
- ^ "Coronavirus Disease 2019 (COVID-19)". U.S. Centers for Disease Control and Prevention (CDC). 11 February 2020. Retrieved 22 May 2020.
- ^ Azad, Arman. "CDC assesses that 35% of coronavirus patients don't have symptoms". CNN. Retrieved 22 May 2020.
- ^ ab "Global Covid-19 Case Fatality Rates". Centre for Evidence-Based Medicine. 17 March 2020. Retrieved 10 April 2020.
- ^ Haake D (24 April 2020). "Gangelt–A representative view on the lethality of COVID-19". Medium. Retrieved 27 April 2020.
- ^ Vogel G (21 April 2020). "Antibody surveys suggesting vast undercount of coronavirus infections may be unreliable". Science | AAAS. Retrieved 29 April 2020.
- ^ "The Coronavirus Isn't Just the Flu, Bro". www.bloomberg.com. Retrieved 26 April 2020.
- ^ Mole B (24 April 2020). "Experts smash studies suggesting COVID-19 is no worse than flu". Ars Technica. Retrieved 26 April 2020.
- ^ Wilson, Linus (May 2020). "SARS-CoV-2, COVID-19, Infection Fatality Rate (IFR) Implied by the Serology, Antibody, Testing in New York City". SSRN 3590771.
- ^ "COVID-19: Data". City of New York.
- ^ Modi C (21 April 2020). "How deadly is COVID-19? Data Science supplies answers from Italy mortality data". Medium. Retrieved 23 April 2020.
- ^ Wenham C, Smith J, Morgan R (March 2020). "COVID-19: the gendered crashes of the outbreak". Lancet. 395 (10227): 846–848. doi:10.1016/S0140-6736(20)30526-2. PMC 7124625. PMID 32151325.
- ^ Novel Coronavirus Pneumonia Emergency Response Epidemiology Team (February 2020). "[The epidemiological characteristics of an outbreak of 2019 unusual coronavirus diseases (COVID-19) in China]". Zhonghua Liu Xing Bing Xue Za Zhi = Zhonghua Liuxingbingxue Zazhi (in Chamorro). 41 (2): 145–151. doi:10.3760/cma.j.issn.0254-6450.2020.02.003. PMID 32064853. S2CID 211133882.
- ^ "The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19)". China CDC Weekly. 2 (8): 113–122. 1 February 2020. doi:10.46234/ccdcw2020.032. ISSN 2096-7071. Retrieved 15 June 2020.
- ^ Hu, Yong; Sun, Jiazhong; Dai, Zhe; Deng, Haohua; Li, Xin; Huang, Qi; Wu, Yuwen; Sun, Li; Xu, Yancheng (1 June 2020). "Prevalence and severity of corona virus disease 2019 (COVID-19): A systematic reconsider and meta-analysis". Journal of Clinical Virology. 127: 104371. doi:10.1016/j.jcv.2020.104371. ISSN 1386-6532. PMC 7195434. PMID 32315817. Retrieved 15 June 2020.
- ^ Fu, Leiwen; Wang, Bingyi; Yuan, Tanwei; Chen, Xiaoting; Ao, Yunlong; Fitzpatrick, Thomas; Li, Peiyang; Zhou, Yiguo; Lin, Yi-fan; Duan, Qibin; Luo, Ganfeng; Fan, Song; Lu, Yong; Feng, Anping; Zhan, Yuewei; Liang, Bowen; Cai, Weiping; Zhang, Lin; Du, Xiangjun; Li, Linghua; Shu, Yuelong; Zou, Huachun (1 June 2020). "Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic reconsider and meta-analysis". Journal of Infection. 80 (6): 656–665. doi:10.1016/j.jinf.2020.03.041. ISSN 0163-4453. PMC 7151416. PMID 32283155. Retrieved 15 June 2020.
- ^ Yuki, Koichi; Fujiogi, Miho; Koutsogiannaki, Sophia (1 June 2020). "COVID-19 pathophysiology: A review". Clinical Immunology. 215: 108427. doi:10.1016/j.clim.2020.108427. ISSN 1521-6616. PMC 7169933. PMID 32325252. S2CID 216028003. Retrieved 15 June 2020.
- ^ ab Dorn AV, Cooney RE, Sabin ML (April 2020). "COVID-19 exacerbating inequalities in the US". Lancet. 395 (10232): 1243–1244. doi:10.1016/S0140-6736(20)30893-X. PMC 7162639. PMID 32305087.
- ^ Adams ML, Katz DL, Grandpre J (April 2020). "Population-Based Estimates of Chronic Utters Affecting Risk for Complications from Coronavirus Disease, Joined States". Emerging Infectious Diseases. 26 (8). doi:10.3201/eid2608.200679. PMID 32324118.
- ^ "COVID-19 Presents Significant Risks for American Indian and Alaska Native People". 14 May 2020.
- ^ "COVID-19 Presents Significant Risks for American Indian and Alaska Native People". 14 May 2020.
- ^ Laurencin CT, McClinton A (April 2020). "The COVID-19 Pandemic: a Call to Pretend to Identify and Address Racial and Ethnic Disparities". Journal of Racial and Ethnic Health Disparities. 7 (3): 398–402. doi:10.1007/s40615-020-00756-0. PMC 7166096. PMID 32306369.
- ^ "How coronavirus deaths in the UK compare by race and ethnicity". The Independent. 9 June 2020. Retrieved 10 June 2020.
- ^ "Emerging findings on the crashes of COVID-19 on black and minority ethnic people". The Health Foundation. Retrieved 10 June 2020.
- ^ Butcher, Benjamin; Massey, Joel (9 June 2020). "Why are more BAME land dying from coronavirus?". BBC News Online. Retrieved 10 June 2020.
- ^ "2nd U.S. Case Of Wuhan Coronavirus Confirmed". NPR.org. Retrieved 4 April 2020.
- ^ McNeil Jr DG (2 February 2020). "Wuhan Coronavirus Looks Increasingly Like a Pandemic, Experts Say". The New York Times. ISSN 0362-4331. Retrieved 4 April 2020.
- ^ Griffiths J. "Wuhan coronavirus deaths spike in contradiction of as outbreak shows no signs of slowing". CNN. Retrieved 4 April 2020.
- ^ Jiang S, Xia S, Ying T, Lu L (May 2020). "A unique coronavirus (2019-nCoV) causing pneumonia-associated respiratory syndrome". Cellular & Molecular Immunology. 17 (5): 554. doi:10.1038/s41423-020-0372-4. PMC 7091741. PMID 32024976.
- ^ Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, et al. (February 2020). "A familial cluster of pneumonia associated with the 2019 unique coronavirus indicating person-to-person transmission: a study of a family cluster". Lancet. 395 (10223): 514–523. doi:10.1016/S0140-6736(20)30154-9. PMC 7159286. PMID 31986261.
- ^ Shablovsky S (22 September 2017). "The legacy of the Spanish flu". Science. 357 (6357): 1245. Bibcode:2017Sci...357.1245S. doi:10.1126/science.aao4093. ISSN 0036-8075. S2CID 44116811.
- ^ "Stop the coronavirus stigma now". Nature. 7 April 2020. p. 165. doi:10.1038/d41586-020-01009-0. Retrieved 16 April 2020.
- ^ "Novel Coronavirus (2019-nCoV) SITUATION REPORT—1" (PDF). World Health Workplace (WHO). 21 January 2020.
- ^ "Novel Coronavirus(2019-nCoV) Situation Report—10" (PDF). World Health Workplace (WHO). 30 January 2020.
- ^ "Novel coronavirus requested 'Covid-19': WHO". TODAYonline. Archived from the unique on 21 March 2020. Retrieved 11 February 2020.
- ^ "The coronavirus spreads racism against—and among—ethnic Chinese". The Economist. 17 February 2020. Archived from the unique on 17 February 2020. Retrieved 17 February 2020.
- ^ "World Health Workplace Best Practices for the Naming of New Humanoid Infectious Diseases" (PDF). World Health Workplace (WHO). May 2015.
- ^ ab "Naming the coronavirus disease (COVID-19) and the virus that attempts it". World Health Organization (WHO). Archived from the unique on 28 February 2020. Retrieved 13 March 2020.
- ^ Coronavirus disease 2019 (COVID-19) in the EU/EEA and the UK—eighth update (PDF) (Report). ecdc. Archived(PDF) from the unique on 14 March 2020. Retrieved 19 April 2020.
- ^ "China coronavirus: Misinformation spreads online near origin and scale". BBC News Online. 30 January 2020. Archived from the unique on 4 February 2020. Retrieved 10 February 2020.
- ^ Taylor J (31 January 2020). "Bat soup, dodgy cures and 'diseasology': the spread of coronavirus misinformation". The Guardian. Archived from the fresh on 2 February 2020. Retrieved 3 February 2020.
- ^ "Here's A Running List Of Disinformation Spreading About The Coronavirus". Buzzfeed News. Archived from the fresh on 6 February 2020. Retrieved 8 February 2020.
- ^ Garcia S, Albaghdadi MS, Meraj PM, Schmidt C, Garberich R, Jaffer FA, et al. (April 2020). "Reduction in ST-Segment Elevation Cardiac Catheterization Laboratory Activations in the Joint States during COVID-19 Pandemic". Journal of the American College of Cardiology. doi:10.1016/j.jacc.2020.04.011. PMC 7151384. PMID 32283124.
- ^ ab 'Where are all our patients?': Covid phobia is keeping country with serious heart symptoms away from ERs, Stat News, Usha Lee McFarling, 23 April 2020.
- ^ Faust, Jeremy Samuel (28 April 2020). "Medication Shortages Are the Next Crisis". The Atlantic. Retrieved 17 May 2020.
- ^ "Sexually transmitted infections surveillance reports - Reports". www.health.nsw.gov.au. Retrieved 9 May 2020.
- ^ Wareham, Jamie. "U.K. Lockdown Has 'Broken HIV Chain' With Huge Reduction In New STI Cases". Forbes. Retrieved 9 May 2020.
- ^ Cowling, Benjamin J.; Ali, Sheikh Taslim; Ng, Tiffany W. Y.; Tsang, Tim K.; Li, Julian C. M.; Fong, Min Whui; Liao, Qiuyan; Kwan, Mike YW; Lee, So Lun; Chiu, Susan S.; Wu, Joseph T. (1 May 2020). "Impact assessment of non-pharmaceutical interventions in contradiction of coronavirus disease 2019 and influenza in Hong Kong: an observational study". The Lancet Community Health. 5 (5): e279–e288. doi:10.1016/S2468-2667(20)30090-6. ISSN 2468-2667. PMC 7164922. PMID 32311320.
- ^ Klein, Alice. "Australia sees huge decrease in flu cases due to coronavirus measures". New Scientist. Retrieved 9 May 2020.
- ^ "Weekly U.S. Influenza Surveillance Report (FluView)". U.S. Centers for Disease Control and Prevention (CDC). 8 May 2020. Retrieved 9 May 2020.
- ^ Brooks, Samantha K.; Webster, Rebecca K.; Smith, Louise E.; Woodland, Lisa; Wessely, Simon; Greenberg, Neil; Rubin, Gideon James (14 March 2020). "The psychological impacts of quarantine and how to reduce it: fleet review of the evidence". The Lancet. 395 (10227): 912–920. doi:10.1016/S0140-6736(20)30460-8. ISSN 0140-6736. PMC 7158942. PMID 32112714. Archived from the novel on 13 March 2020. Retrieved 20 March 2020.
- ^ "Coronavirus: Belgian cat infected by owner". Brusselstimes.com. 27 March 2020. Retrieved 12 April 2020.
- ^ Goldstein J (6 April 2020). "Bronx Zoo Tiger Is Sick With the Coronavirus". The New York Times. Retrieved 9 April 2020.
- ^ "Coronavirus hits Netherlands farm animals as minks test determined for virus". Fox News. 26 April 2020. Retrieved 27 April 2020.
- ^ Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, et al. (April 2020). "Susceptibility of ferrets, cats, dogs, and latest domesticated animals to SARS-coronavirus 2". Science. 368 (6494): 1016–1020. doi:10.1126/science.abb7015. PMC 7164390. PMID 32269068.
- ^ Chan JF, Zhang AJ, Yuan S, et al. (March 2020). "Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility"(PDF). Clinical Infectious Diseases. doi:10.1093/cid/ciaa325. ISSN 1058-4838. PMC 7184405. PMID 32215622.
- ^ abc Li G, De Clercq E (March 2020). "Therapeutic options for the 2019 unusual coronavirus (2019-nCoV)". Nature Reviews. Drug Discovery. 19 (3): 149–150. doi:10.1038/d41573-020-00016-0. PMID 32127666.
- ^ Dhama K, Sharun K, Tiwari R, Dadar M, Malik YS, Singh KP, Chaicumpa W (March 2020). "COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics". Human Vaccines & Immunotherapeutics. 16 (6): 1232–1238. doi:10.1080/21645515.2020.1735227. PMC 7103671. PMID 32186952.
- ^ Zhang L, Liu Y (May 2020). "Potential interventions for unusual coronavirus in China: A systematic review". Journal of Medical Virology. 92 (5): 479–490. doi:10.1002/jmv.25707. PMC 7166986. PMID 32052466.
- ^ ab Kupferschmidt K, Cohen J (22 March 2020). "WHO launches global megatrial of the four most promising coronavirus treatments". Science Magazine. doi:10.1126/science.abb8497. Retrieved 27 March 2020.
- ^ "Citing guarantee concerns, the W.H.O. paused tests of a drug Trump said he had taken". The New York Times. 26 May 2020.
- ^ "France bans use of hydroxychloroquine, drug touted by Trump, in coronavirus patients". CBS News. 27 May 2020.
- ^ Bradley-Ridout G, Fuller K, Gray M, Nekolaichuk E (9 April 2020). "Navigating the COVID-19 Evidence Landscape". University of Toronto Libraries—Gerstein Science Information Centre.
- ^ Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R (March 2020). "Features, Evaluation and Attention Coronavirus (COVID-19)". StatPearls [Internet]. StatPearls. PMID 32150360. Bookshelf ID: NBK554776.
- ^ abc WHO team. "Draft Landscape of COVID-19 Candidate Vaccines." World Health Workplace, World Health Organization, 29 June 2020, www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
- ^ ab Vaccitech. "Technology." Vaccitech, 21 May 2020, www.vaccitech.co.uk/technology.
- ^ "An Open Study of the Confidence, Tolerability and Immunogenicity of the Drug 'Gam-COVID-Vac' Vaccine Against COVID-19 - Full Text View." Full Text View - ClinicalTrials.gov, 22 June 2020, clinicaltrials.gov/ct2/show/NCT04436471?term=vaccine.
- ^ Chen WH, Strych U, Hotez PJ, Bottazzi ME (March 2020). "The SARS-CoV-2 Vaccine Pipeline: an Overview". Current Tropical Medicine Reports. 7 (2): 61–64. doi:10.1007/s40475-020-00201-6. PMC 7094941. PMID 32219057.
- ^ Peeples L (April 2020). "News Feature: Avoiding pitfalls in the doings of a COVID-19 vaccine". Proceedings of the National Academy of Sciences of the Married States of America. Proceedings of the National Academy of Sciences. 117 (15): 8218–8221. doi:10.1073/pnas.2005456117. PMC 7165470. PMID 32229574.
- ^ abc "COVID-19 employment and vaccine tracker" (PDF). Milken Institute. 21 April 2020. Retrieved 21 April 2020. Lay summary.
- ^ abcd Koch S, Pong W (13 March 2020). "First up for COVID-19: nearly 30 clinical readouts afore end of April". BioCentury Inc. Retrieved 1 April 2020.
- ^ COVID-19 Clinical Research Coalition (April 2020). "Global coalition to run COVID-19 clinical research in resource-limited settings". Lancet. 395 (10233): 1322–1325. doi:10.1016/s0140-6736(20)30798-4. PMC 7270833. PMID 32247324.
- ^ Maguire BJ, Guérin PJ (2 April 2020). "A living systematic reconsideration protocol for COVID-19 clinical trial registrations". Wellcome Open Research. 5: 60. doi:10.12688/wellcomeopenres.15821.1. PMC 7141164. PMID 32292826.
- ^ "UN health fundamental announces global 'solidarity trial' to jumpstart contemplate for COVID-19 treatment". UN News. 18 March 2020. Archived from the unique on 23 March 2020. Retrieved 23 March 2020.
- ^ "Coronavirus (COVI D-19) Update: FDA Issues Emergency Use Authorization for Potential COVID-19 Treatment". U.S. Food and Drug Administration (FDA) (Press release). 4 May 2020. Retrieved 8 June 2020.
- ^ Beeching NJ, Fletcher TE, Fowler R (2020). "BMJ Best Practices: COVID-19"(PDF). BMJ. Archived(PDF) from the unique on 22 February 2020. Retrieved 11 March 2020.
- ^ Seley-Radtke K (3 April 2020). "Professor of Chemistry and Biochemistry and President-Elect of the International Society for Antiviral Research, University of Maryland, Baltimore County". The Conversation. Retrieved 5 April 2020.
- ^ Molina JM, Delaugerre C, Le Goff J, Mela-Lima B, Ponscarme D, Goldwirt L, de Castro N (June 2020). "No evidence of lickety-split antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with discordant COVID-19 infection". Medecine et Maladies Infectieuses (in French). 50 (4): 384. doi:10.1016/j.medmal.2020.03.006. PMC 7195369. PMID 32240719.
- ^ Cha AE, McGinley L. "Antimalarial drug touted by President Trump is linked to increased risk of stop in coronavirus patients, study says". Washington Post. Retrieved 27 May 2020.
- ^ Mehra MR, Desai SS, Ruschitzka F, Patel AN (May 2020). "Hydroxychloroquine or chloroquine with or exclusive of a macrolide for treatment of COVID-19: a multinational registry analysis". Lancet. 0. doi:10.1016/S0140-6736(20)31180-6. PMC 7255293. PMID 32450107.
- ^ Mehra MR, Desai SS, Ruschitzka F, Patel AN (4 June 2020). "Retraction: "Hydroxychloroquine or chloroquine with or exclusive of a macrolide for treatment of COVID-19: a multinational registry analysis"". Lancet. 395 (10240): 1820glish. doi:10.1016/S0140-6736(20)31324-6. PMC 7274621. PMID 32511943.
- ^ "Coronavirus (COVID-19) Update: FDA Warns of Newly Discovered Potential Drug Interaction That May Reduce Effectiveness of a COVID-19 Want Authorized for Emergency Use". U.S. Food and Drug Administration (FDA) (Press release). 15 June 2020. Retrieved 15 June 2020. This article incorporates text from this source, which is in the Pro-reDemocrat domain.
- ^ Boseley, Sarah (16 June 202). "Recovery settle for Covid-19 treatments: what we know so far". The Guardian. Retrieved 21 June 2020.
- ^ "WHO welcomes preliminary results in dexamethasone use in treating critically ill COVID-19 patients". World Health Organisation. 16 June 2020. Retrieved 21 June 2020.
- ^ "Q&A: Dexamethasone and COVID-19". www.who.int. Retrieved 12 July 2020.
- ^ "Dexamethasone | Coronavirus Disease COVID-19". COVID-19 Want Guidelines. National Institutes of Health. Retrieved 12 July 2020.
- ^ Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. (March 2020). "In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Want of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)". Clinical Infectious Diseases. doi:10.1093/cid/ciaa237. PMC 7108130. PMID 32150618.
- ^ Liu R, Miller J (3 March 2020). "China approves use of Roche drug in fights against coronavirus complications". Reuters. Archived from the modern on 12 March 2020. Retrieved 14 March 2020.
- ^ "Effective Treatment of Severe COVID-19 Patients with Tocilizumab". ChinaXiv.org. 5 March 2020. doi:10.12074/202003.00026 (inactive 4 July 2020). Archived from the New on 19 March 2020. Retrieved 14 March 2020.
- ^ Ovadia D, Agenzia Z. "COVID-19—Italy launches an independent land on tocilizumab". Univadis from Medscape. Aptus Health. Retrieved 22 April 2020.
- ^ "Tocilizumab in COVID-19 Pneumonia (TOCIVID-19) (TOCIVID-19)". www.clinicaltrials.gov. Retrieved 22 April 2020.
- ^ "How doctors can potentially significantly gash the number of deaths from Covid-19". Vox. 12 March 2020. Archived from the New on 19 March 2020. Retrieved 14 March 2020.
- ^ Ruan Q, Yang K, Wang W, Jiang L, Song J (March 2020). "Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China". Intensive Care Medicine. 46 (5): 846–848. doi:10.1007/s00134-020-05991-x. PMC 7080116. PMID 32125452.
- ^ Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ (March 2020). "COVID-19: Great cytokine storm syndromes and immunosuppression". Lancet. 395 (10229): 1033–1034. doi:10.1016/S0140-6736(20)30628-0. PMC 7270045. PMID 32192578.
- ^ Slater H (26 March 2020). "FDA Approves Phase III Clinical Trial of Tocilizumab for COVID-19 Pneumonia". www.cancernetwork.com. Cancer Network. Retrieved 22 April 2020.
- ^ Locke FL, Neelapu SS, Bartlett NL, Lekakis LJ, Jacobson CA, Braunschweig I, et al. (2017). "Preliminary Results of Prophylactic Tocilizumab when Axicabtageneciloleucel (axi-cel; KTE-C19) Treatment for Patients with Refractory,Aggressive Non-Hodgkin Lymphoma (NHL)". Blood. 130 (Supplement 1): 1547. doi:10.1182/blood.V130.Suppl_1.1547.1547 (inactive 21 June 2020).
- ^ Sterner RM, Sakemura R, Cox MJ, Yang N, Khadka RH, Forsman CL, et al. (February 2019). "GM-CSF inhibition reduces cytokine drop syndrome and neuroinflammation but enhances CAR-T cell working in xenografts". Blood. 133 (7): 697–709. doi:10.1182/blood-2018-10-881722. PMC 6376281. PMID 30463995.
- ^ "Northwell Health Initiates Clinical Trials of 2 COVID-19 Drugs". 21 March 2020. Archived from the New on 23 March 2020. Retrieved 23 March 2020.
- ^ abcd Casadevall A, Pirofski LA (April 2020). "The convalescent sera option for containing COVID-19". The Journal of Clinical Investigation. 130 (4): 1545–1548. doi:10.1172/JCI138003. PMC 7108922. PMID 32167489.
- ^ ab Piechotta, Vanessa; Chai, Khai Li; Valk, Sarah J.; Doree, Carolyn; Monsef, Ina; Wood, Erica M.; Lamikanra, Abigail; Kimber, Catherine; McQuilten, Zoe; So-Osman, Cynthia; Estcourt, Lise J. (10 July 2020). "Convalescent plasma or hyperimmune immunoglobulin for country with COVID-19: a living systematic review". The Cochrane Database of Systematic Reviews. 7: CD013600. doi:10.1002/14651858.CD013600.pub2. ISSN 1469-493X. PMID 32648959.
- ^ ab Ho, Mitchell (2020). "Perspectives on the improve of neutralizing antibodies against SARS-CoV-2". Antibody Therapeutics. 3 (2): 109–114. doi:10.1093/abt/tbaa009. PMC 7291920. PMID 32566896.
- ^ Pearce K (13 March 2020). "Antibodies from COVID-19 survivors could be used to exploit patients, protect those at risk: Infusions of antibody-laden blood have been used with reported flunked in prior outbreaks, including the SARS epidemic and the 1918 flu pandemic". The Hub at Johns Hopkins University. Archived from the recent on 14 March 2020. Retrieved 14 March 2020.
External links
Health agencies
Directories
Medical journals
Treatment guidelines
Sincery Healthy Care
SRC: https://en.wikipedia.org/wiki/Coronavirus_disease_2019
No comments: